## 



K16P 0207

Reg. No. : .....

Name : .....

Fourth Semester M.Sc. Degree (Regular/Supplementary/Improvement )

Examination, March 2016

PHYSICS (2014 Admn.)

PHY 4C14: Optics

Time: 3 Hours Max. Marks: 60

## SECTION - A

Answer both questions (either a or b).

- a) With the help of a diagram explain the working of a carbondioxide laser.
  - b) i) Explain the nonlinearity in the polarization of the medium
    - ii) Derive the equation for the generation of second harmonics.
- 2. a) i) Explain the structure and theory of propagation of light in an optical fibre.
  - ii) Write a short note on the signal degradation in fibres.
  - b) Discuss the different types of signal distortions in an optical fibre.

 $(2\times12=24)$ 

## SECTION-B

Answer any four. (One mark for Part - a, 3 marks for Part - b, 5 marks for Part - c)

- 3. a) What do you mean by temporal coherence?
  - Explain the rate equation for a four level laser system.
  - c) At what temperatures are the rates of spontaneous and stimulated emission equal. Take  $\lambda = 500$  nm.



- 4. a) What is Kerr effect?
  - b) Write a note on optical rectification.
  - c) Distinguish between Type 1 and Type 2 phase matching.
- 5. a) Define numerical aperture.
  - b) Calculate the temporal broadening of an impulse after propagating through 1 km in a graded index fibre if refractive index of core is 1.4746 and that of cladding is 1.46.
  - c) Explain the characteristics of optical fibre amplifier.
- 6. a) Define quality factor of a laser.
  - b) Write down any three applications of He-Ne laser.
  - c) Derive the Einstein's coefficients and explain its significance.
- 7. a) What is Pockels effect?
  - b) Write a note on stimulated Raman Scattering.
  - c) A step index of single mode fibre exhibits material dispersion of  $6 \text{ psnm}^{-1}\text{km}^{-1}$  at an operating wavelength of 1.55  $\mu\text{m}$ . Assume that n1 = 1.45 and  $\Delta$  = 0.5%, calculate the diameter of the core needed to take the total dispersion of the fire zero at this wavelength.
- 8. a) Define frequency mixing.
  - b) With the help of energy level diagram explain the working of a Ruby laser.
  - c) What are the different types of line broadening mechanisms in laser?
     (4x9 = 36)

September and appropriate for a four fewer large restaunt

limple to eduly therethe off earned the