

Reg.	No. :	
Name	e :	

IV Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.) Examination, March 2015 PHYSICS

PH 402 : Optics

Time: 3 Hours Max. Marks: 50

SECTION-A

Contains four questions of which answer any two, each carry 10 marks.

- 1. Explain the theory of three level laser system using the rate equations.
- 2. Explain the working of a CO2 laser Mention any two advantages this laser.
- What is meant by coherence and how the coherence time and line width are calculated by Fourier analysis.
- 4. a) Explain the propagation of light in optical fibers.
 - b) Write a note on the materials used for the construction of the optical fibers. (2×10=20)

E bris CA FB/d rignelevew ream SECTION = B = solube obstroado confusuo B

Contains eight questions of which answer any five questions each carry 3 marks.

- Explain temporal coherence.
- 6. Explain the significance of the Einstein's coefficient.
- 7. Explain the Mode locking.
- 8. Write a note on Fabrey Perot resonator.
- 9. What do you mean by spatial frequency filtering?

- Write a note on the material dispersion in optical fibers.
- Explain the working principle of Dye laser.
- 12. Explain "Optical mixing". (5x3=15)

SECTION-C

Contains five questions of which answer any three question and each question carry 5 marks.

- 13. A certain optical fibre has an attenuation of 3.5 dB/km at 850 mm. If 0.5 mW of optical power is initially launched into the fibre what is the power level in µW after 4 km.
- 14. A step index multimode fiber has a core of index 1.5 and a cladding index of 1.798. Find: Lauge of the performance and the state of th
 - a) the intermodal dispersion factor for the fibre
 - b) the total dispersion in 18 km length
 - c) the maximum bit rate allowed assuming dispersion limiting
- 15. Consider a periodic function of the form f(t) = t for $-\tau < t < \tau$ and $f(t + 2n\tau) = f(t)$

Expand the above function a Fourier series.

- 16. Quasimonochromatic source emits radiation of mean wavelength 5461 AU and a has a bandwidth 109 Hz. Calculate:
 - a) coherence time
 - b) coherence length
 - c) frequency stability.
- 17. Calculate the ratio of spontaneous emission to stimulated emission by an incandescent bulb at 2000 K. Take v = 6x1014 Hz. $(3 \times 5 = 15)$