

K15P 0092

Reg. No. :

Name :

Third Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.) Examination, November 2015 PHYSICS (2014 Admn.)

PHY 3C 12: Nuclear and Particle Physics

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer both questions (either a or b)

1. a) Discuss the shell model of nucleus.

OR

- b) What is meant by β -decay? Describe the Fermi theory of β -decay.
- 2. a) i) Obtain semiempirical mass formula.
 - ii) Discuss nuclear electromagnetic moments.

OF

b) Discuss the conservation laws in particle physics.

(2×12=24)

SECTION-B

1 mark for Part (a), 3 marks for Part (b), 5 marks for Part (c). Answer any four.

- 3. a) What is meant by skin thickness parameter of a nucleus?
 - b) With the help of a schematic diagram briefly explain the working of a mass spectrograph.
 - c) Calculate the binding energies of the ${}^{64}_{28}Ni = 63.927958 \,\text{u}$ and ${}^{64}_{29}Cu = 63.929759 \,\text{u}$. (Mn = 1.008665 u, M_H = 1.007825 u)

K15P 0092

- 4. a) What are the basic similarities between a liquid drop and an atomic nucleus?
 - b) What are the main nuclear properties on which the idea of shell model rests?
 - c) The meson theory of nuclear forces assumes the virtual exchange of pions. If a nucleon emits a virtual pions of rest mass 270 m_e, calculate the range of the nuclear force.
- 5. a) Write a short note on deuteron.
 - b) Explain the exchange characteristics of nuclear forces.
 - c) Explain the classification of Beta transitions.
- 6. a) Write a short note on quarks.
 - b) Describe the phenomenon of internal conversion.
 - c) Complete the following nuclear reactions

i)
$$_3\text{Li}^7 + _2\text{He}^4 \rightarrow \underline{\hspace{1cm}} + _0\text{n}^1$$

ii)
$$_7N^{14} + \alpha$$
 -particle \rightarrow _____+ proton

iii)
$$_{8}O^{16} + _{1}H^{2} \rightarrow \underline{\hspace{1cm}} + _{7}N^{14} + \underline{\hspace{1cm}}$$

iv)
$$_{5}B^{10} + _{0}n^{1} \rightarrow _{----} + _{2}He^{4}$$

- 7. a) What is nuclear photoeffect,?
 - b) What are the various conservation laws to be valid in ordinary nuclear reactions?
 - c) Calculate the fission rate for ²³⁵U required to produce 2 watt and the amount of energy that is released in the complete fissioning of 0.5 kg of ²³⁵U. (Assume that the average energy released per fission is 200 MeV).
- 8. a) What is the difference between a neutrino and an antineutrino?
 - b) Give an account classification of elementary particles.
 - c) Say which of the following reactions are possible.

i)
$$\pi^+ + n^0 \rightarrow \Lambda^0 + k^+$$

ii)
$$\pi^+ + n^0 \rightarrow k^0 + k^+$$
 and to retigrent graphic and attached

 $(4 \times 9 = 36)$

Cu = 63 329759 U - (Mn = 1.0