

Reg. No. :

Name :

Third Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.) Examination, November 2014 PHYSICS (2009 Admn. Onwards) PH 302 : Electrodynamics

Time: 3 Hours

Max. Marks: 50

SECTION-A

Answer any two questions. Each question carries 10 marks.

- Show that a plane wave incident normally on a perfectly conducting boundary surface suffers reflection to produce standing waves having 90° phase difference between E and H.
- 2. State and explain Ampere's circuital law. Use it to calculate the field due to an infinitely long conductor.
- 3. Derive the expression for momentum of charged particles using the Lorentz force equation.
- 4. Discuss the Lorentz dispersion model. Explain the parameters of the equations.
 What is the limitation of the model?
 (2×10=20)

SECTION-B

Answer any five questions. Each question carries 3 marks.

- 5. What is a rectangular wave guide? Represent the electric field and magnetic field boundary conditions.
- 6. What is Brewster's angle? Explain the significance of Brewster's angle.
- 7. Explain positive helicity of circularly polarised waves.
- 8. What is electric dipole radiation?
- 9. Explain the concept of geometry of space time.

P.T.O.

M 26098

- 10. Define Plasma oscillations and Plasma frequency. On what factors does the plasma frequency depend?
- 11. Explain negative helicity of circularly polarised waves.
- 12. Explain the terms four vector potential.

 $(5 \times 3 = 15)$

SECTION - C

Answer any three questions. Each question carries 5 marks.

- Derive the inhomogeneous wave equations in terms of scalar potential Q and vector potential A using Maxwell's equations.
- 14. Derive the transverse plane wave solutions of Maxwell's equations in a non-conducting media.
- 15. Obtain the Abraham Lorentz equation of motion. Give its significance.
- 16. Derive an expression for the power radiated by a point charge.
- 17. Obtain the Cauchy relation for refractive index of a transparent material. (3x5=15)