

CEI VILLIBRARY IN COLUMN COLUM

Reg. No. :

Name :

Il Semester M.Sc. Degree (Reg./Suppl./Imp.) Examination, April 2019 (2014 Admission Onwards) PHYSICS

PHY 2C08 - Statistical Mechanics

Time: 3 Hours

englished pasto to lebem Isomany's on Max. Marks: 60

SECTION - A Company of the E-page of the Company of

Answer both questions. (Either a) or b)).

1. a) State and prove Liouville's theorem.

OR

- b) Discuss one dimensional Ising model for phase transitions.
- 2. a) Derive Bose-Einstein distribution law. How can it be applied to obtain Planck's formula for black body radiations?

OR

b) What is Fermi energy? Obtain an expression for energy of a Fermi gas at absolute zero. (2x12=24)

SECTION - B

Answer any four questions. (1 mark for Part a), 3 marks for Part b), 5 marks for Part c)).

- 3. a) What are ensembles?
 - b) Distinguish microstates from macrostates.
 - c) Explain Gibbs paradox. How is it resolved?
- a) Differentiate internal energy of a canonical and grand canonical ensemble.
 - b) Calculate the mean energy of a one dimensional harmonic oscillator.
 - c) Account for thermodynamics of a harmonic oscillator.

P.T.O.

K19P 0305

- 5. a) What is meant by degrees of freedom?
 - b) State and prove the law of equipartition of energy.
 - c) Express entropy in terms of partition functions.
- 6. a) What is meant by phase transition?
 - b) Distinguish first and second order phase transitions.
- c) Discuss the dynamical model of phase transitions.
 - 7. a) State Bose-Einstein distribution law.
 - b) Bring out the distinction between Bose-Einstein and Fermi Dirac statistics.
 - c) Write short note on Bose-Einstein condensation.
 - 8. a) Which distribution law will you use to study electron gas and why?
 - b) Two particles are to be distributed in two cells by FD statistics. Give the possible distributions.
 - c) Calculate the Fermi energy in electron volts for sodium assuming that it has one free electron per atom. Given density of sodium is 0.97 g cm⁻³.
 Atomic weight of sodium = 23. (4×9=36)