Reg. No	. :	
---------	-----	--

Name :

II Semester M.Sc. Degree (Reg./Suppl./Imp.) Examination, April 2019 (2014 Admission Onwards) PHYSICS

PHY2C06: Quantum Mechanics - I

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer both questions (Either a or b) each question carries 12 marks.

 a) What is an operator? Distinguish between Hermitian and Skew-Hermitian operators. Show that the commutator of two Hermitian operators is anti-Hermitian.

OR

- b) Distinguish between Schrodinger, Heisenberg pictures and Interaction pictures in quantum mechanics. Outline the interaction picture. Obtain the equation of motion for the state vector in the interaction picture.
- a) What are Clebsch Gordan Coefficients? Deduce recursion relations for Clebsch Gordan coefficients.

OR

 Explain the principle of WKB approximation and derive connection formula.

(2×12=24)

SECTION - B

Answer any four. Each question carries 9 marks. 1 mark for Part -a, 3 marks for Part -b, 5 marks for Part -c.

- 1. a) Discuss unitary transformation.
 - b) Explain its properties.
 - If U is a transformation matrix which connects two complete and orthonormal bases |φ_n > and |φ'_n >, show that U is unitary.

P.T.O.

K19P 0303

- 2. a) What is Heisenberg's Uncertainty relationship?
 - b) Derive the general uncertainty principle.
 - c) Explain the basic postulates of quantum mechanics.
- 3. a) Define orbital angular momentum operator.
 - b) Obtain angular momentum matrices for j = ½.
 - Obtain the eigenvalue spectrum of the angular momentum operators J² and J₂ using commutation relations between them.
- a) Write down the time dependent Schrodinger equation for the Hydrogen atom.
 - b) Obtain the radial wave equation for Hydrogen atom.
 - Solve the equation for the energy eigenvalues and normalised eigenfunctions of hydrogen atom.
- 5. a) What is a parity operator?
 - b) Show that an observable A is a constant of motion if the corresponding operator commutes with the Hamiltonian.
 - c) Show that rotational invariance of the Hamiltonian leads to the conservation of angular momentum.
- a) Give the principle of time independent perturbation theory.
 - b) From time independent perturbation theory, arrive at the expression to the first order correction energy of a non degenerate system subject to a small perturbation.
 - Using first order degenerate perturbation theory, calculate the energy levels of n = 2 states of hydrogen atom placed in an external uniform weak electric field along the positive z – axis. (4x9=36)