K16P 0428

Reg. No. :

Second Semester M.Sc. Degree (Regular/Supplementary/Improvement)

Examination, March 2016

PHYSICS

(2014 Admn. Onwards)
PHY 2C08: Statistical Mechanics

Time: 3 Hours Max. Marks: 60

SECTION-A

Answer both questions (either a or b). Each question carries 12 marks. (2×12=24)

- a) Distinguish between microstates and macrostates. Derive an expression for entropy of a classical ideal gas.
 - b) Explain the quantum mechanical ensemble theory. Explain density matrix.
- 2. a) Explain the thermodynamic behavior of an ideal Bose System. What is the condition for the onset of Bose condensation?
 - b) Define Fermi temperature and Fermi energy. Explain Pauli's theory of paramagnetism.

SECTION-B

Answer any four. 1 mark for Section a, 3 marks for Section b, and 5 marks for Section c.

3. a) Explain degenerate state and statistical weight factor. (4×9=36)

- b) Derive the Gibbs-Duhem relation.
- c) The free energy F of a system depends on a thermodynamic variable ϕ as F = $-a \phi^2 + b \phi^6$ where a, b > 0. Find the value of ϕ when the system is in thermodynamic equilibrium.

P.T.O.

K16P 0428

- 4. a) What are the parameters which describe a microstate?
 - b) Show that in a steady state probability density is independent of the coordinates of phase space.
 - c) Two states with energy difference 4.83×10^{-17} J occurs with relative probability of e². Calculate the temperature of the system (k = 1.38×10^{-23} J/K).
- 5. a) What is meant by canonical ensemble?
- b) Explain the term phase space of a classical system.
 - c) Energy difference between the ground state ¹s₀ and the first excited stae ³s₁ of He atom is 159843 cm ⁻¹. Calculate the fraction of excited atoms in He at 6000 K.
- 6. a) What is meant by an ideal gas?
 - b) A Bose gas consists of 5 particles and 4 available energy states. How many macrostates are possible?
 - c) Show that for an ideal Bose gas $PV = \frac{2E}{3}$.
- 7. a) Define Fermi gas.
 - b) Explain the main features of Pauli theory of paramagnetism.
 - c) Derive the equation of state of an ideal Fermi gas.
- 8. a) What is meant by lattice gas?
 - b) What is the difference between simple and uni-axial ferromagnets?
 - c) Give an exact treatment of one dimensional Ising model.