Answer any three que

OG CE! VA

Reg. No. :

Name :

Second Semester M.A./M.Sc./M.Com. Degree (Regular/Supplementary/
Improvement) Examination, March 2015
(2013 and Earlier Admn.)
PHYSICS

PH203 : Solid State Physics

Time: 3 Hours Max. Marks: 50

PART-A

Answer any two questions. Each question carries 10 marks.

- Describe Langevin's theory for a paramagnetic gas and give its limitation.
 How does paramagnetic susceptibility vary with temperature?
- Discuss electrical conductivity of metals on the basis of quantum mechanical considerations. Compare this expression for electrical conductivity with the classical one.
- 3. Derive the equation for the conductivity of an intrinsic semiconductor in terms of carrier concentration and carrier mobilities.
- Explain the BCS theory of superconductivity and discuss the energy gap based on this theory. (2×10=20)

PART-B

Answer any five questions. Each question carries 3 marks.

- 1. Explain the concept of reciprocal lattice.
- 2. What are the drawbacks of classical free electron theory?
- 3. Explain hall effect. Give an application.
- 4. Mention three important applications of superconducting materials.
- 5. Explain what is meant by ferromagnetic domains.

M 27344

- 6. What is nano technology?
- 7. What do you mean by quantum dots?
- 8. How does X-ray diffraction method help in the study of structural characterization of nano materials? (5×3=15)

PART-C

Answer any three questions. Each question carries 5 marks.

- 1. How are nano tubes synthesized?
- Electrons are accelerated by 345 volt and are reflected from a crystal. The first reflection maximum occurs when the glancing angle is 60 degrees. Calculate the spacing of the crystal.
- 3. The angle of reflection of neutron beam from a crystal interplanar spacing is 3.84A° is 30 degrees. Calculate the speed of neutrons.
- 4. Calculate the London penetration depth λ_0 at OK for lead of density 11300 kg/m³ and atomic weight 207.19. If T_C = 7.22 K, calculate the increase in λ at 3.61 K.
- 5. A magnetic material has a magnetization of 3300 ampere/meter and flux density of 0.0044 Wb/m². Calculate the magnetizing field and the relative permeability of the material.

 (3x5=15)