Reg. No.:

Name:

I Semester M.Sc. Degree (CBSS-Reg./Suppl./Imp.)

Examination, October - 2019 (2014 Admission Onwards)

PHYSICS

PHY 1C01- MATHEMATICAL PHYSICS - I

Time: 3 Hours Max. Marks: 60

SECTION-A

Answer both questions, either (a) or (b). Each question carries 12 marks. (2×12=24)

 a) Explain Gauss elimination method to solve a system of linear equations. Using Gauss elimination method, solve the system of equations 2y+z=8,x-2y-3z=0,-x+y+2z=3.

(OR)

- b) Obtain the series solution to the Bessel's equation $x^2y'' + xy' + (x^2 n^2)y = 0.$
- a) What do you mean by an analytic function? State and prove the necessary and sufficient condition for a complex function to be analytic.
 (OR)
 - Derive Rodrigues' formula for Legendre polynomials. Deduce first two Legendre polynomials.

SECTION-B

Answer any Four (1 mark for part 'a', 3 marks for part 'b', 5 marks for part 'c') (4×9=36)

- 3. a) Define gradient of a scalar field.
 - Express the spherical polar unit vectors in terms of Cartesian unit vectors.
 - c) Prove that $\nabla \cdot (r^n \vec{r}) = (n+2)r^{n-1}$ where \vec{r} is the general vector and $r = |\vec{r}|$.

- 4. a) What do you mean by a symmetric tensor?
 - b) Explain divergence of tensors.
 - c) Prove that every square matrix A can be expressed as sum of two matrices of the form A=B + i c where B and i c are Hermitian matrices.
- 5. a) Give an example for a linear first order ordinary differential equation.
 - b) Discuss the singular points of the Bessel's equation: $x^2y'' + xy' + (x^2 n^2)y = 0$.
 - Explain Forbenius method to find the series solution of a linear second order homogeneous ordinary differential equation.
- 6. a) Check whether $f(z) = \overline{z}$ is analytic or not.
 - b) Discuss the derivative of the logarithmic function $f(z) = \ln z$.
 - c) Find the Laurent series expansion of $f(z) = \frac{ze^z}{z-1}$ about z=1. Also specify the region of convergence.
- 7. a) Define beta function.
 - b) Express the coefficient of n^{th} term of the expansion of $(1+x)^{\frac{1}{2}}$ in power of x in terms of the double factorial notation.
 - c) Prove that $\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$.
- a) Write the first three Hermite polynomials.
 - b) Define spherical Bessel function. Obtain the expression for $j_{\tau}(x)$.
 - c) Discuss the orthogonality property of Legendre polynomials.