	Contract of
	004047
Reg. No. :	1.
Name :	WILLAS &

K19P 1499

I Semester M.Sc. Degree (CBSS-Reg./Suppl./Imp.)

Examination, October - 2019

(2014 ADMISSION ONWARDS)

PHYSICS

PHY1C02: CLASSICAL MECHANICS

PHYTCUZ. CLASSICAL MECHANICO

Time: 3 Hours

Max. Marks: 60

SECTION-A

Answer both questions (either a or b)

 $(2 \times 12 = 24)$

- (a) Derive Lagrange's equation of motion from Hamiltonian principle (OR)
 - (b) Obtain Lagrange's equation of motion for small oscillations.
- (a) Derive Hamilton Jacobi differential equation. Work out Harmonic oscillator problem as an example of Hamilton Jacobi method.
 (OR)
 - (b) Solve Kepler problem by Hamilton Jacobi method.

SECTION-B

Answer any Four questions (1 mark for a, 3 marks for b, 5 marks for c) (4×9=36)

- 3. (a) What are cyclic coordinates?
 - (b) Discuss the superiority of Lagrangean approach over Newtonian approach.
 - (c) Show that generalized momentum conjugate to a cyclic coordinate is conserved.
- 4. (a) Define degrees of freedom.
 - (b) Derive Hamilton's canonical equations of motion.
 - (c) Find the Lagrangean of a spherical pendulum and obtain the equations of motion.

P.T.O.

- 5. (a) Define Poisson's bracket.
 - (b) Give the fundamental Poisson bracket.
 - (c) For what values of m and n, do the transformation equations Q=q^m Cos np and P = q^m Sin np represent a canonical transformation.
- 6. (a) Define moment of inertial tensor.
 - (b) Derive Euler's equation of motion for a rigid body.
 - (c) Solve Euler's equation for force free motion of a symmetric top.
- 7. (a) What are normal coordinates?
 - (b) Explain conditions for stable and unstable equilibrium during small oscillations.
 - (c) Account for the free vibrations of a linear triatomic molecule.
- 8. (a) State Hamiltons principle for a conservative system.
 - (b) Explain principle of least action.
 - (c) Derive Jacobi's identity.