

Reg.	No.	

Name :

I Semester M.Sc. Degree (Reg./Sup./Imp.) Examination, November 2015 (2014 Admn. Onwards) PHYSICS

PHY 1C01: Mathematical Physics - I

Time: 3 Hours

Max. Marks: 60

SECTION-A

Answer both questions, either (a) or (b). Each question carries 12 marks.

 a) Define Hermitian matrix. Prove that Hermitian matrix remains. Hermitian under unitary similarity transformation.

OR

- b) Derive Laplacian operator in any orthogonal curvilinear co-ordinates system.
- 2. a) i) Explain inner multiplication and contraction of tensors.
 - Apply a suitable contractions to the curvature tensor and arrive at Ricci tensor.

OR

 b) Obtain Rodrigues's formula for Legendre polynomials. Deduce first three Legendre polynomials. (2×12=24)

SECTION-B

Answer any four (1 mark for part 'a', 3 marks for part 'b', 5 marks for part 'c'):

- 3. a) What is scale factors in cylindrical polar coordinates?
 - b) What are orthogonal curve linear co-ordinates?
 - c) Obtain an expression for curl in spherical polar co-ordinates.

K15P 0304

Semiester M.Sc. Degree (Rad

- 4. a) What is the importance of diagonal elements in a diagonalized matrix?
 - b) With suitable example explain what are diagonal matrices?
 - c) Explain how a matrix can be diagonalized?
- 5. a) What is second order linear ODE's ?
 - b) Explain Frobeniu's method.
 - c) Apply Frobeniu's method to linear oscillator problem.
- 6. a) Give a short account of graphical representation of complex numbers.
 - b) Prove that the modulus of the sum of two complex numbers does never exceed the sum of their moduli.
 - c) Discuss the necessary and sufficient conditions for f(z) to be analytic.
- 7. a) What is the role of Euler's definite integral in the definitions of Gamma function?
 - b) Derive the recursion relation for gamma function: $\frac{1}{2} \frac{1}{2} \frac{1}{2}$
 - c) Find the value of $\Gamma(\frac{1}{2})$.
- 8. a) Write down Bessel differential equation.
 - b) Obtain a power series solution.
 - c) Show that $e^{\frac{x}{2}(t-\frac{1}{t})} = \sum_{n=-\infty}^{+\infty} J_n(x) t^n$ where $J_n(x)$ is given by the series obtained in (a). (4×9=36)