

Reg. No.:....

Name:....

I Semester M.A./M.Sc./M.Com. Degree (Reg./Supple./Improve.) Examination, November 2014 PHYSICS

(2014 Admn. Under CBSS)

PHY 1C 01 : Mathematical Physics - 1

Time: 3 Hours Max. Marks: 60

SECTION-A

Answer both questions, either (a) or (b).

 a) With suitable example explain in detail Unitary and Orthogonal Matrices. If a square matrix A of order n has n linearly independent Eigen vectors, then a matrix P can be found such that P⁻¹ AP is a diagonal matrix.

OR

- Obtain an expression for Grad, Divergence and Curl in terms of Circular Cylindrical Coordinates.
- a) Prove that Hermitian matrix remain Hermitian under unitary similarity transformation. If A and B are two square matrices and A is non-zero singular prove that A⁻¹B and BA⁻¹ have the same Eigen value.

OR

b) Discuss the general solution of Bessel differential equation. Explain briefly
the orthogonal property of Bessel function. (2×12=24)

SECTION-B

Answer any four:

- 3. a) Give the advantages of curvilinear coordinate system.
 - b) Obtain an expression for curl in spherical coordinate system.
 - c) Briefly explain unit vectors in spherical coordinates.
- 4. a) Explain what is rank of a tensor.
 - Show that every tensor of second rank can be resolved into symmetric and anti-symmetric Parts.
 - c) With suitable example explain contraction. State and prove quotient law.
- 5. a) Explain order and degree of a differential equation.
 - b) Solve the equation $\frac{d^2y}{dx^2} + \cot x \left(\frac{dy}{dx}\right) + 4\left(\cos ec^2x\right)y = 0$.
 - Discuss in detail the series integration method of the solution of Linear Differential Equations (Fresenius method).
- 6. a) Discuss Cauchy Integral formula.
 - b) State and explain Laurent's theorem.
 - c) Evaluate the following integral using residue theorem:

$$\int_{c} \frac{4-3z}{z(z-1)(z-2)} dz \text{ Where c is the circle } |z| = \frac{3}{2}.$$

- 7. a) Define Beta function.
 - b) Define Gamma function. Derive the recurrence relation τ (n) = $\frac{1}{n}\tau$ (n + 1).
 - c) Write down Bessel's differential equation and discuss in detail its solution.
- 8. a) What is Legendre Polynomial?
 - b) Show that $P_n(1) = 1$.
 - c) Prove that P_n (cos θ) can be expressed as a series consisting of cosines of even or odd integer multiples of θ . (4x9=36)