

Reg.	No.	:	

Name :

I Semester M.A./M.Sc./M.Com. Degree (Reg./Supple./Imp.) Examination, November 2014 PHYSICS

(2013 and Earlier Admn.)
PH 101: Mathematical Physics – 1

Time: 3 Hours Sexb(x) 9 | last every sluming a outplib Max. Marks: 50

SECTION-A

Answer any two questions. Each question carries ten marks.

- 1. State and prove Cauchy's integral formula.
- 2. Derive Bessel's equations from that of Legendre.
- What is Hermitian and Skew Hermitian matrices? Show that every square
 matrix can be uniquely expressed as the sum of a Hermitian and
 Skew-Hermitian matrix. Also show that if H is a Hermitian matrix, then iH is
 Skew-Hermitian.
- Derive the generating function of Laguerre polynomials. (2×10=20)

SECTION-B

Answer any five questions. Each question carries three marks.

- 5. If u = 2x + 3, v = y 4, w = z + 2, show that u,v,w are orthogonal.
- 6. Define Hermitian and Orthogonal matrices, give one example of each type.
- What is tensor? Distinguish between a symmetrical and an anti symmetrical tensor.

- 8. Find the poles and residues at the poles of $\frac{z}{\cos z}$.
- 9. To show that $\beta(m,n) = \beta(n,m)$.
- 10. Write the Hermite polynomial and determine H₃(x).
- 11. Show that the matrix is orthogonal $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.
- 12. Using Rodrigue's formula, prove that $\int_{-1}^{+1} P_0(x) dx = 2$. (5x3=15)

SECTION - C

Answer any three questions . Each question carries five marks.

- 13. For Bessel functions, prove that $J_{n+3} + J_{n+5} = \frac{2}{x}(n+4)J_{n+4}$.
- 14. Define metric tensor and determine metric tensor of spherical coordinates.
- 15. Find the residue of $\frac{z^4}{(z-1)^4(z-2)(z-3)}$ at z = 1.
- 16. What are Legendre Polynomials? Show that $P_{2m}(0) = (-1)^m \frac{2m!}{2^m (m!)^2}$.
- 17. For Bessel function $J_n(x)$, Prove that $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\phi x \sin\phi) d\phi$.