K21P 0240

Reg. No.	:		
Vame :		Mary and an arrangement	

IV Semester M.Sc. Degree (CBSS – Reg./Suppl. (Including Mercy Chance)/Imp.)

Examination, April 2021
(2017 Admission Onwards)

Mathematics

MAT 4C16: DIFFERENTIAL GEOMETRY

Time : 3 Hours

PART - A

Answer any four questions from this Part. Each question carries 4 marks.

- 1. Sketch typical level sets of the function $f(x_1, x_2) = x_1^2 x_2^2$.
- 2. Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
- 3. Find and sketch the gradient field of the function $f(x_1, x_2) = x_1x_2$.
- Show that the spherical image of an n-surface with orientation N is the reflection through the origin of the spherical image of the same n-surface with orientation – N.
- 5. Let S be an n-surface in \mathbb{R}^{n+1} , let $\alpha:I\to S$ be a parametrized curve in S. Let X and Y be smooth vector fields tangent to S along α . Show that $(X\cdot Y)'=X'\cdot Y+X\cdot Y'$.
- 6. Let $\alpha(t) = (x(t), y(t))$, $t \in I$ be a local parametrization of an oriented plane curve C. Show that $k \circ \alpha = (x'y'' y'x'')/[(x')^2 + (y')^2]^{\frac{3}{2}}$.
- 7. Find the length of the parametrized curve $\alpha(t) = (t^2, t^3), t \in [0, 2].$
- 8. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} whose Gauss-Kronecker curvature is nowhere zero. Show that the Gauss map is a diffeomorphism.

P.T.O.

Max. Marks: 80

K21P 0240

-2-

PART - B

Answer any four questions from this part without omitting any Unit. Each question carries 16 marks.

UNIT-I

- 9. a) Find the integral curve through p = (0, 1) of the vector field $X(x_1, x_2) = (x_2, -x_1)$.
 - b) Let U be an open set in \mathbb{R}^{n+1} and let $f: U \to \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f and let c = f(p). Show that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.
- 10. a) Show that the unit n-sphere $x_1^2 + ... + x_{n+1}^2 = 1$ is an n-surface in \mathbb{R}^{n+1} .
 - b) Let S be an (n-1)-surface in \mathbb{R}^n . Show that the cylinder over S is an n-surface in \mathbb{R}^{n+1} .
- 11. a) State Lagrange Multiplier theorem.
 - b) Let a, b, c $\in \mathbb{R}$ be such that $ac b^2 > 0$. Show that the maximum and minimum values of the function $g(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$ on the unit circle $x_1^2 + x_2^2 = 1$ are the eigen values of the matrix $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$.
- 12. a) Let S be an n-surface in \mathbb{R}^{n+1} , let X be a smooth tangent vector field on S and let $p \in S$. Show that there exists a maximal integral curve of X through $p \in S$.
 - b) Prove that each connected n-surface in \mathbb{R}^{n+1} has exactly two orientations.

- 13. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ for some $c \in \mathbb{R}$ of a smooth function $f : \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Show that spherical image of S is the unit sphere S^n .
- 14. a) Show that if $\alpha: I \to \mathbb{R}^{n+1}$ is a parametrized curve with constant speed then $\ddot{\alpha}(t) \perp \dot{\alpha}(t)$ for all $t \in I$.
- b) Let S be an oriented n-surface in \mathbb{R}^{n+1} with orientation N. Show that a parametrized curve $\alpha: I \to S$ is a geodesic in S if and only if it satisfies the differential equation $\ddot{\alpha} + (\dot{\alpha} \cdot N \circ \alpha) N \circ \alpha = 0$.
- c) Let S be an n-surface in \mathbb{R}^{n+1} . Show that the velocity vector field along a parametrized curve α in S is parallel if and only if α is geodesic in S.

K21P 0240

- 15. a) Show that the Weingarten map is self-adjoint.
 - b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x_1, x_2) = x_1^2 x_2^2$. Let p = (1, 1) and $v = (p, \cos\theta, \sin\theta)$. Compute $\nabla_v f$.
- 16. a) Define the local parametrization of an oriented plane curve.
 - b) Let C be an oriented plane curve and $p \in C$. Show that there exists a local parametrization of C containing p.
 - c) Show that local parametrizations of plane curves are unique upto isomorphism.

UNIT - III

- a) Show that the unit speed global parametrization of a connected oriented plane curve is either one to one or periodic.
 - b) Let U be an open set in \mathbb{R}^{n+1} . Show that for each 1-form ω on U there exists unique functions $f_i:U\to\mathbb{R},\ i=1,\ldots,\ n+1,$ such that $\omega=\sum_{i=1}^{n+1}f_idx_i$.
 - c) Show that the integral of an exact 1-form over a closed curve is zero.
- 18. a) Let S be the sphere $x_1^2+\ldots+x_{n+1}^2=r^2, r>0$, oriented by the inward unit normal. Let $p\in S$ and $v\in S_p$ be a unit vector. Find the normal curvature of S at p in the direction v.
 - b) Show that on a compact oriented n-surface S in \mathbb{R}^{n+1} there exists a point p such that the second fundamental form at p is definite.
- 19. a) Define a parametrized n-surface in $\mathbb{R}n+k$ ($k \ge 0$).
 - b) Give an example of a 2-surface in \mathbb{R}^4 .
 - c) Find the Gaussian curvature of the parametrized torus $\varphi(\theta, \phi) = ((a + b \cos \phi) \cos \theta, (a + b \cos \phi) \sin \theta, b \sin \phi), a, b \in \mathbb{R}.$
- 20. a) Let S be an n-surface in \mathbb{R}^{n+1} and let $p \in S$. Show that there exists an open set V about p in \mathbb{R}^{n+1} and a parametrized n-surface $\phi: U \to \mathbb{R}^{n+1}$ such that ϕ is one to one map from U onto $V \cap S$.
 - State and prove inverse function theorem for n-surfaces.