SECTION - D

Extinin the principles of green chemistry.

Compare the classical and green reaction conditions used for the folions.

ili) Cinquerd readling;

36. Illustrate the various (your supremolecular devices and their applications

38. What are the different types of molecular receptors ? Explain

39 These lit various methods for the synthesis of name materials.

AG. Classrope the application of nano-materials in different areas.

42. Discussiviention spir resonance spectronomy in petall.

48. Applications of Mosthauer specificaciony.

For Everythe principle and instrumentation technique in DTI

K21P 0189

Reg.	No.:	
Mam		

IV Semester M.Sc. Degree (CBSS – Reg./Suppl. (Including Mercy Chance)/Imp.)

Examination, April 2021

(2014 Admission Onwards)

CHEMISTRY
CHE 4C.12 : Interdisciplinary Topics and Instrumentation Techniques

Time: 3 Hours alements on an inclusion of policy and po

SECTION - A

Answer all questions in one word or one sentence. Each question carries one mark.

- 1. Name the molecular forces acting in supra molecular assembly.
- 2. What are the two types of molecular switching devices ?
- 3. What is three R's in green chemistry?
- 4. Give one example for ionic liquid.
- 5. Give an example for a 2-D nano-materials.
- 6. Define g value in ESR spectroscopy.
- 7. Name any one electrochemical techniques.
- 8. Give an example for a green solvent other than water.

(8×1=8)

SECTION - B

Answer any eight questions in two or three sentences. Each question carries two marks.

- 9. What are cyclophanes? Information in algorithm and the cyclophanes ? Information in algorithm and the cyclophanes?
- 10. Define kramers degeneracy.
- 11. Give any two examples for an organic free radicals.

P.T.O.

K21P 0189

-2-

- 12. What is lithography?
- 13. What is the principle of AFM technique?
- 14. Explain nano-composite materials with examples.
- 15. What is Lande's splitting factor?
- 16. What are the application of DTA?
- 17. What are quantum dots? of box asligot younglooks this such also
- 18. Explain top down method for the preparation of nano-materials.
- Explain sonochemical method for the preparation of nano-materials.
- 20. Describe briefly thermometric titrimetry.
- 21. Explain Dopler effect.
- 22. What is meant by nano CAD?
- 23. What are phase transfer catalysts?
- 24. What is meant by self-assembly technique?

(8×2=16

SECTION - C

Short paragraph questions. Answer any four. Each question carries 3 marks.

- 25. Give an account on carbon nano-structures.
- 26. Explain the principle of Mossbauer spectroscopy.
- 27. Explain the concept of atom economy in green reactions.
- 28. Distinguish between SEM and TEM technique.
- 29. Explain application of nano-materials in gene mapping and protic engineering.
- 30. Briefly explain the various concepts in supramolecular chemistry.
- 31. Explain chemical isomer shift.
- 32. Describe the role of cyclodextrin in host-guest chemistry. (4x3=12)

K21P 0189

SECTION - D

Essay type questions. Answer any four. Each question carries 6 marks.

- 33. Explain the principles of green chemistry.
- 34. Compare the classical and green reaction conditions used for the following :
 - i) Aldol condensation
 - ii) Cannizaro reaction
 - iii) Grignard reaction.
- 35. Describe applications of green preparations.
- 36. Illustrate the various types supramolecular devices and their applications.
- 37. Describe on types of molecular forces in supramolecular reactions.
- 38. What are the different types of molecular receptors ? Explain.
- 39. Illustrate various methods for the synthesis of nano-materials.
- 40. Describe the application of nano-materials in different areas.
- 41. Discuss the scattering methods for characterising nano-materials.
- 42. Discuss electron spin resonance spectroscopy in detail.
- 43. Applications of Mossbauer spectroscopy.
- 44. Describe principle and instrumentation technique in DTA.

 $(4 \times 6 = 24)$