

PART - D (Long essays)

Answer any two questions. Answers should not exceed six pages.

- 28. Explain the two approaches in the hypothesis testing of regression coefficients.
- 29. Explain the steps involved in the White's test for heteroscedasticity.
- 30. Given the following sample data of a two variable regression model. $\sum X_i = 60$, $\sum Y_i = 120$, $\sum X_i^2 = 540$, $\sum Y_i^2 = 1200$, $\sum X_i, Y_i = 620$ Sample size = 30. Estimate regression equations Y on X and X on Y.
- 31. Distinguish between distributed lag model and autoreggressive model. What are the problems in Koyck, adaptive expectations and partial adjustment models? (2×13=26)

K18P 0782

	SE WINEN CO
Reg. No. :	
Name :	CEL -ATTIERARY
anni/ /h	PALAS S

II Semester M.A. Degree (Supplementary) Examination, March 2018 (2013 and Earlier Admission) **ECONOMICS**

			Paper – VI : Bas	SIC ECOI	nometrics		
Time	: 3	Hours			notelena	Max. Marks : 80	
			PAF	RT – A		minimi la 11	
Ans	wer	all questions (0	Objective type).				
1.		m	ethod minimizes	the resid	ual sum of squa	ares in order to	
	a)	522 (12) (5)		b)	Maximum likelih	nood	
	c)	Bayesian		d)	None of the abo	ove	
2.	a r	is the difference between actual and estimated Y values in regression.					
	a)	Intercept	b) Slope	c)	Lag	d) Error	
3.	Th	e probability of	not committing a	Type II e	rror is called		
	a)	Level of signif	icance	b)	Probability valu	e marie di	
	c)	Size of the tes	st	d)	Power of the te	st	
4.	As	sample size ir	ncreases, the sam	pling err	or		
	a)	Increases	1	b)	Decreases		
	c)	Remains cons	stant	d)	None		

5.	OLS	regression	model	must	be	linear	ir

a) Parameters

b) Variables

c) Both

- d) None
- 6. _____ measures the goodness of fit of model.
 - a) d statistic

b) p value

c) Standard error

- d) R square
- 7. Factor analysis is a remedial measure for
 - a) Normality
 - b) Autocorrelation
 - c) Multicollinearity
 - d) Heteroscedasticity
- 8. Dummy variable models can be used for
 - a) Categorical variable analysis
 - b) Deseasonalization
 - c) Structural change
 - d) All the above
- 9. Dropping a variable to solve multicollinearity may lead to
 - a) Specification bias

b) Autocorrelation

c) Endogenity

- d) Simultaneity
- 10. Spearman's rank correlation test is used to test
 - a) Heteroscedasticity
 - b) Autocorrelation
 - c) Multicollinearity
 - d) None of the above

 $(10 \times 1 = 10)$

PART - B

Answer any eight questions. Answers should not exceed one and a half page each.

- 11. What is panel data?
- 12. What is nominal scale?
- 13. Distinguish between Type I and Type II error.
- 14. Define central limit theorem.
- 15. What is an efficient estimator?
- 16. Define degrees of freedom.
- 17. What is p value?
- Define autocorrelation.
- 19. Define coefficient of correlation.
- 20. What is GLS method?
- 21. What is dummy variable trap?

 $(8 \times 3 = 24)$

PART - C

(Short essays)

Answer any four questions. Answers should not exceed two and a half page each.

- 22. Distinguish between Econometrics and Mathematical Economics.
- 23. State and explain Gauss Markow theorem.
- 24. What is the justification of stochastic disturbance term in regression analysis.
- Discuss the consequences of OLS estimation in the presence of multicollinearity.
- 26. Explain ANOVA in regression.
- 27. Explain Koyck model.

 $(4 \times 5 = 20)$