Let X be a normed space.

 If X is reflexive, then prove that its dud X' is also reflexive.

 If X is Sanach and uniformly convex, than prove that X is reflexive.

Prove that F is a compact map it and only it for every bounded sequence [x_1 in X, (F(x_1)) has a subsequence which converges in Y.

If F is compact, then other that F is also a compact map.

6 Let X be a normed space and A = CL(X). Then prove that a). The eigenspectrum and the spectrum of A are countable sets and zero. The privilegality limit point of it.

lit - tinu

Prove that there is a unique B = BL(H) such that (A(x), y) = (x,B(y)). To series x, y ∈ H. Can we drop the completeness of H.7 Justily.

Let M be a Millert spinor over G and A = BL(M), and $A = H(x) \times (H(x), x) \times (H(x)) \times ($

It let H be a Hilbert apace over Cand. A \sim BL(H). a) Prove that $m(A) = a_m(A) \cup \{A : k = n_m(A')\}$. by If A is a noth-adjoint operator, then prove that A! $\simeq 0$ and $A \leq \|A\|$ t, when

Let if by a Hilbort space and A a St.(H).

a) If A is compact, then prove that A' is also a compact operator.

If A is a father - Schmidt operator, then prove that A' is also a Hilbort-Schm.

Reg. No. :

IV Semester M.Sc. Degree (C.B.S.S. – Reg./Suppl/(Including Mercy Chance)/Imp.) Examination, April 2021

(2017 Admission Onwards)

MATHEMATICS

MAT 4C 15 : Operator Theory

Time: 3 Hours

(X) Id m nego al ziplanego aldihevni lia lo Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Let X be a normed space and A be a bounded operator on X. If $k \in \sigma_a(A)$, then prove that there is a sequence $\{x_n\}$ in X with $||x_n|| = 1$ for every n such that $||(A kI)(x_n)|| \to 0$ as $n \to \infty$.
- Let X, Y and Z be normed spaces. If F ∈ BL(X, Y) and G ∈ BL(Y, Z) then prove that (GF)' = F'G', where F' denotes the transpose of the operator F.
- State true or false and justify. "Every weak convergence sequence in the dual of a normed space is weak" convergent."
- State true or false and justify. "Every finite dimensional normed space is reflexive."
- State true or false and justify. "Every continuous linear map on a normed space is compact."
- 6. Let A be unitary operator on a Hilbert space H. Then prove that ||A|| = 1.
- Prove that the numerical range of a bounded operator on a Hilbert space is bounded.
- 8. Define Hilbert Schmidt operator on a separable Hilbert space and give an example.

PART - B

Answer four questions from this Part without omitting any Unit. Each question carries 16 marks.

IV Semester M. Sc. Degree 11- tinU

- 9. Let X be a Banach space and A ∈ BL(X). Then prove that
 - a) A is invertible if and only if A is bounded below and the range of A is dense in X.
- b) The set of all invertible operators is open in BL(X).
- 10. Let X be a Banach space over $\mathbb C$ and $A \in BL(X)$. Then prove that
 - a) $\sigma_e(A) \subseteq \sigma_a(A) \subseteq \sigma(A)$.
 - b) σ(A) is non-empty.
- 11. Let X and Y be normed spaces and F ∈ BL(X, Y).
 - a) If X' is separable, then prove that X is separable.
 - b) Prove that $\|F'\| = \|F\| = \|F''\|$ and $F''J_X = J_YF$, where J_X and J_Y are the canonical embedding of X and Y into X' and Y' respectively.
- 12. Let X be a normed space.
 - a) If X is finite dimensional, then prove that the weak convergence and norm convergence are the same.
 - b) If X is separable, then prove that every bounded sequence in X' has a weak* convergent subsequence.

Unit - II

- Let X be a normed space.
 - a) If X is reflexive, then prove that every bounded sequence in X has a weak convergent subsequence.
 - b) If X is uniformly convex and $\{x_n\}$ is a bounded sequence in X such that $||x_n|| \to 1$ and $||x_n + x_m|| \to 2$ as n, $m \to \infty$, then prove that $\{x_n\}$ is a Cauchy sequence.

-3-

K21P 0239

- 14. Let X be a normed space.
 - a) If X is reflexive, then prove that its dual X' is also reflexive.
 - b) If X is Banach and uniformly convex, then prove that X is reflexive.
- 15. Let X and Y be normed spaces and $F: X \rightarrow Y$ be linear.
 - a) Prove that F is a compact map if and only if for every bounded sequence {x_n} in X, {F(x_n)} has a subsequence which converges in Y.
 - b) If F is compact, then prove that F' is also a compact map.
- Let X be a normed space and A ∈ CL(X). Then prove that
 - a) The eigenspectrum and the spectrum of A are countable sets and zero is the only possible limit point of it.
 - b) $\sigma(A) = \sigma(A')$.

Unit - III

- 17. Let H be a Hilbert space and A ∈ BL(H).
 - a) Prove that there is a unique B ∈ BL(H) such that ⟨A(x), y⟩ = ⟨x, B(y)⟩, for every x, y ∈ H. Can we drop the completeness of H? Justify.
 - b) If R(A) = H, then prove that A* is bounded below, where A* is the adjoint of A.
- Let H be a Hilbert space over C and A ∈ BL(H).
 - a) If A is self-adjoint, then prove that $||A|| = \sup \{ |\langle A(x), x \rangle| : x \in H, ||x|| \le 1 \}$.
 - b) Prove that there are unique self adjoint operators B and C on H such that A = B + iC.
- 19. Let H be a Hilbert space over Cand A ∈ BL(H).
 - a) Prove that $\sigma(A) = \sigma_a(A) \cup \{k : \overline{k} \in \sigma_e(A^*)\}$.
 - b) If A is a self-adjoint operator, then prove that $A^2 \ge 0$ and $A \le ||A||I$, where I is the identity operator on H.
- 20. Let H be a Hilbert space and A ∈ BL(H).
 - a) If A is compact, then prove that A* is also a compact operator.
 - b) If A is a Hilbert-Schmidt operator, then prove that A* is also a Hilbert-Schmidt operator.