If $T=L^2$ ([- π , π)) is a bounded, translation-invariant lines undefinition, then show that there exists $L_m \in \mathbb{C}$ such that T ($e^{(m)}$) = $L_m e^{(m)}$ for each $m \in \mathbb{Z}$

Ht - vinU

To before approximate identity. Suppose $(*L^1(R))$ and $(g_i)_{i=0}$ is an approximate identity. Then allow mall for every Unbelique point s of f. Top g s f(s) = f(s)

(8) Define Fourier transform and inverse Fourier transform on R. Suppose $f = L^1(R)$ and h(R), then show that $\frac{1}{2\pi} \left[\frac{1}{2} (R)^{-1} (R) \right]$ are on R. Lee tric to establish

the uniqueness of Foundi tensions:

9: Suppose tel. (R). (L) (R) as n exquence of functions such that f_{iv} f_{iv} ∈ L'(R) for each n and f_{iv} − f in L* (R) as n − ∞. Show that (b) converges to a unique

FEL[®](P) Also show were the L^{*}(P) Ten L^{*}(P) then F L^{*}

Or 11. g of 2000, one on that U. 25 = 20.5, gr. and U. - 2015 II had given on the fitting as new, usen proved in a section of the contract of

K21P 0242

Reg. No. :

Name :

IV Semester M.Sc. Degree (CBSS – Reg./Suppl. (Including Mercy Chance)/Imp.) Examination, April 2021

(2017 Admission Onwards)

MATHEMATICS

MAT 4E02 : Fourier and Wavelet Analysis

Time: 3 Hours Max. Marks: 80

(2.5) Suppose M is a natural rule = TRACEM and zelf (2.1). Deline zelf (2.1)

Answer any four questions from this Part. Each carries 4 marks.

- 1. Define the conjugate reflection of $\omega \in l^2(Z_N)$. For any $z, \omega \in l^2(Z_N)$ and $k \in Z$, prove that $z * \widetilde{\omega}(k) = \langle z, R_k \omega \rangle$.
- 2. Explain downsampling operator and upsampling operator.
- 3. If N = 2M for some natural number M, $z \in l^2(Z_N)$ and $\omega \in l^2(Z_{N/2})$, then prove that $D(z)*\omega = D(z*U(\omega))$.
- 4. If $z \in l^2(Z)$ and $\omega \in l^1(Z)$, show that $z * \omega \in l^2(Z)$ and $||z * \omega|| \le ||\omega||_1 ||z||$.
- 5. Define translation-invariant linear transformation on $l^2(Z)$. If $T: l^2(Z) \to l^2(Z)$ is bounded and translation-invariant, then show that T(z) = b*z for all $z \in l^2(Z)$, where $b = T(\delta)$.
- 6. If $z \in l^2(Z)$, show that $(z^*)^*(\theta) = z^*(\theta + \pi)$.
- 7. If f, $g \in L^1(R)$, show that $f * g \in L^1(R)$ and $||f * g||_1 \le ||f||_1 ||g||_1$.
- 8. If f, $g \in L^1(R)$ and if f, $\hat{g} \in L^1(R)$, prove that $\langle \hat{f}, \hat{g} \rangle = 2\pi \langle f, g \rangle$. (4×4=16)

9.3 (II) 5(0) 5 = (II) You'd Half syon; (X) Loos bits (X) 10 E II (U P.T.O.

PART - B

-2-

Answer any four questions from this Part, without omitting any Unit. Each question carries 16 marks.

Unit - I

- 9. a) Let $w \in l^2(Z_N)$. Then show that $\{R_k w\}_{k=0}^{N-1}$ is an orthonormal basis for $l^2(Z_N)$ if and only if $|\widehat{w}(n)| = 1$ for all $n \in Z_N$.
 - b) Suppose M is a natural number, N = 2M and $z \in l^2(Z_N)$. Define $z * \in l^2(Z_N)$ by $z * (n) = (-1)^n z(n)$ for all n. Then show that $(z^*)^n(n) = \hat{z}(n + M)$ for all n.
 - 10. Suppose M is a natural number and N = 2M. If u, $v \in l^2(Z_N)$, show that $\left\{R_{2k} v\right\}_{k=0}^{M-1} \cup \left\{R_{2k} u\right\}_{k=0}^{M-1}$ is an orthonormal basis for $l^2(Z_N)$ if and only if the system matrix A(n) of u, v is unitary for each n = 0, 1, ..., M -1.
 - 11. Suppose M is a natural number, N = 2M and u, v, s, t $\in l^2(Z_N)$. Show that $\tilde{t}*U(D(z*\tilde{v}))+\tilde{s}*U(D(z*\tilde{u}))=z$ for all $z\in l^2(Z_N)$ if and only if $A(n)\begin{bmatrix}\hat{s}(n)\\\hat{t}(n)\end{bmatrix}=\begin{bmatrix}\sqrt{2}\\0\end{bmatrix}$ for each n = 0, 1, ..., N 1, where A(n) is the system matrix of u, v.
 - If 2^p | N, explain the construction of a pth stage wavelet basis for t² (Z_N) from a given pth stage wavelet filter sequence.

Unit - II

- 13. a) If $\{a_j\}_{j\in Z}$ is an orthonormal set in a Hilbert space H and if $f\in H$, show that the sequence $\left\{\left\langle f,\ a_j\right\rangle\right\}_{i\in Z}\in\ell^2(Z)$.
 - b) Show that an orthonormal set $\{a_j\}_{j\in Z}$ in a Hilbert space H is a complete orthonormal set if an only if $f=\sum_{i\in Z}\left\langle f,a_i\right\rangle a_i$ for all f in H.
- 14. a) Suppose $f \in L^1([-\pi, \pi))$ and $(f, e^{in\theta}) = 0$ for all $n \in Z$. Show that $f(\theta) = 0$ a.e.
 - b) If $z \in l^2(Z)$ and $\omega \in l^1(Z)$, prove that $(z*\omega)^*(\theta) = \hat{z}(\theta)\hat{\omega}(\theta)$ a.e.

K21P 0242

- 15. If $T:L^2([-\pi,\pi))\to L^2([-\pi,\pi))$ is a bounded, translation-invarient linear transformation, then show that there exists $\lambda_m\in C$ such that $T(e^{im\theta})=\lambda_m e^{im\theta}$ for each $m\in Z$.
- 16. Suppose that $u, v \in l^1(Z)$. Show that $B = \{R_{2k}v\}_{k \in Z} \cup \{R_{2k}u\}_{k \in Z}$ is a complete orthonormal set in $l^2(Z)$ if and only if the system matrix $A(\theta)$ is unitary for all $\theta \in [0, \pi)$.

Unit - III

- 17. Define approximate identity. Suppose $f \in L^1(R)$ and $\{g_t\}_{t>0}$ is an approximate identity. Then show that for every Lebesgue point x of f, $\lim_{t\to 0^+} g_t * f(x) = f(x)$.
- 18. Define Fourier transform and inverse Fourier transform on R. Suppose $f \in L^1(R)$ and $\hat{f} \in L^1(R)$, then show that $\frac{1}{2\pi} \int_{R} \hat{f}(\xi) e^{ix\xi} \, d\xi = f(x)$ a.e. on R. Use this to establish the uniqueness of Fourier transform.
- 19. Suppose $f \in L^2(R)$, $\{f_n\}_{n=1}^m$ is a sequence of functions such that f_n , $\hat{f}_n \in L^1(R)$ for each n and $f_n \to f$ in $L^2(R)$ as $n \to \infty$. Show that $\{\hat{f}_n\}_{n=1}^m$ converges to a unique $F \in L^2(R)$. Also, show that if $f \in L^1(R) \cap L^2(R)$, then $F = \hat{f}$.
- 20. If $f, g \in L^2(R)$, prove that $\langle \hat{f}, \hat{g} \rangle = 2\pi \langle f, g \rangle$ and $\|\hat{f}\| = \sqrt{2\pi} \|f\|$. If $f \in L^2(R)$ and if $\{f_n\}_{n=1}^{\infty}$ is a sequence of L^2 functions such that $f_n \to f$ in $L^2(R)$ as $n \to \infty$, then prove that $\hat{f}_n \to \hat{f}$ in $L^2(R)$ as $n \to \infty$. (4×16=64)