### K20P 0119



## Unit - III

- Suppose f∈ L¹(ℝ) and {g₁}<sub>t>0</sub> is an approximate identity. Then prove that for every Lebesgue point x of f, lim+g₁ \* f(x)=f(x).
- 14. a) Define G:  $\mathbb{R} \to \mathbb{R}$  by G(x) =  $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ . Then prove that
  - ii) There exists  $c_1 > 0$  such that  $G(x) \le \frac{c_1}{(1+|x|)^2}$ .
  - iii)  $\hat{G}(\xi) = e^{-\xi/2}$ , or  $\hat{G} = \sqrt{2\pi}G$ .
  - b) Suppose f,  $g\in L^1(\mathbb{R})$  and  $\hat{f},\,\hat{g}\in L^1(\mathbb{R})$  . Then prove that
    - i)  $f, g, \hat{f}, \hat{g} \in L^2(\mathbb{R})$
    - ii)  $\langle \hat{f}, \hat{g} \rangle = 2\pi \langle f, g \rangle$ .
- 15. a) Suppose f,  $g \in L^2(\mathbb{R})$ . Then prove that

$$\lim_{g \to g} |f(x, g)| = \frac{1}{2\pi} \langle f(x, g) \rangle$$

- ii)  $\|\dot{f}\| = \frac{1}{\sqrt{2\pi}} \|f\|$
- b) Suppose g,  $h \in L^1(\mathbb{R})$ , and either  $f \in L^1(\mathbb{R})$  or  $f \in L^2(\mathbb{R})$ . Then prove that  $(f * g)^2 = \hat{f} \hat{g}$ .

| ii) $f*(g*h) = (f*g)$ | )*n |
|-----------------------|-----|
|-----------------------|-----|

(4×16=64)

bus it is to propose where the second is the second of the

K20P 0119

| Reg. No. | : |  |  |
|----------|---|--|--|
|----------|---|--|--|

Name : .....

IV Semester M.Sc. Degree (CBSS - Reg/Suppl/Imp.) Examination, April 2020
(2017 Admission Onwards)

MATHEMATICS

MAT 4E02: Fourier and Wavelet Analysis

Time: 3 Hours Max. Marks: 80

Instructions: 1) Notations are as in prescribed text book.

- Answer any four questions from Part A.
   Each question carries 4 marks.
- Answer any four questions from Part B without omitting any Unit. Each question carries 16 marks.

# should restill beloweve appeal the postPART - At out the secretar sleviens with to

- $1. \ \ \text{Let z, } w \in \mathit{l}^{2}\left(\mathbb{Z}_{N}\right) \text{. Prove that } \left\langle \mathsf{R}_{k}\mathsf{z}, \, \mathsf{R}_{j}\mathsf{w} \right\rangle = \left\langle \mathsf{z}, \, \mathsf{R}_{j-k}, \mathsf{w} \right\rangle = \left\langle \mathsf{R}_{k-j} \, \, \mathsf{z}, \, \mathsf{w} \right\rangle \text{ for any } \mathsf{k} \in \mathbb{Z}.$
- Let {x<sub>n</sub>}<sub>n=1</sub><sup>∞</sup> be a sequence in a complex inner product space X, and let x ∈ X.
   Prove that {x<sub>n</sub>}<sub>n=1</sub><sup>∞</sup> converges to x in X if and only if ||x<sub>n</sub> x|| converges to 0 as n → ∞, as a sequence of numbers.
- 3. Define  $f(\theta) = 1/\sqrt{|\theta|}$  for  $\theta \neq 0$ , and f(0) = 0. Show that  $f \in L^1([-\pi, \pi))$  but  $f \notin L^2([-\pi, \pi))$ .
- 4. Suppose  $z \in l^2(\mathbb{Z})$ . Then prove that  $(z^*) \wedge (\theta) = \hat{z}(\theta + \pi)$ .
- Define addition on L² (ℝ) by (f + g) (x) = f(x) + g(x). Define multiplication of a function f ∈ L² (R) by a scalar α ∈ ℂ by (αf) (x) = αf(x). With these operations, prove that L² (ℝ) is a vector space.
- 6. If  $f \in L^1(\mathbb{R})$  is continuous at x, then prove that x is a Lebesgue point of f. (4×4=16)

P.T.O.

#### PART - B

# I - tinU Semester M.Sc. Degree (CBSS - Reg./Suppl./Imp.) Examination, April 2020

- 7. a) Suppose  $M \in \mathbb{N}$  and N = 2M, and  $u \in l^2(\mathbb{Z}_N)$  is such that  $\{R_{2k}u\}_{k=0}^{M-1}$  is an orthonormal set with M elements. Define  $v \in l^2(\mathbb{Z}_N)$  by  $v(k) = (-1)^{k-1} \overline{u(1-k)}$  for all k. Then prove that  $\{R_{2k}v\}_{k=0}^{M-1} \cup \{R_{2k}u\}_{k=0}^{M-1}$  is a first-stage wavelet basis for  $l^2(\mathbb{Z}_N)$ .
  - b) Let  $w \in l^2(\mathbb{Z}_N)$ . Then show that  $\{R_k w\}_{k=0}^{N-1}$  is an orthonormal basis for  $\ell^2(\mathbb{Z}_N)$  if and only if  $|\widetilde{w}(n)| = 1$  for all  $n \in \mathbb{Z}_N$ .
- 8. Suppose  $N = 2^n$ ,  $1 \le p \le n$ , and  $u_1, v_1, u_2, v_2, \ldots, u_p, v_p$  form a  $p^{th}$  stage wavelet filter sequence. Suppose  $z \in l^2(\mathbb{Z}_N)$ . Then prove that the output  $\{x_1, x_2, x_3, \ldots, x_p, y_p\}$  of the analysis phase of the corresponding  $p^{th}$  stage wavelet filter bank can be computed using no more than  $4N + N \log_2 N$  complex multiplications.
- 9. a) Suppose N is divisible by 2, and  $u_1 \in l^2(\mathbb{Z}_N)$ .
- Define  $u_2 \in l^2(\mathbb{Z}_{N/2})$  by  $u_2(n) = u_1(n) + u_1\left(n + \frac{N}{2}\right)$ . Then prove that for all m  $\hat{u}_2(m) = \hat{u}_1(2m)$ .
- ii) Suppose N is divisible by 2'. Define  $u_i \in l^2(\mathbb{Z}_{N/2}^{l-1})$  by  $u_i(n) = \sum_{k=0}^{2^{l-1}-1} u_i \left(n + \frac{kN}{2^{l-1}}\right)$ . Then prove that  $\hat{u}_i(m) = \hat{u}_i \left(2^{l-1}m\right)$ .
  - b) Suppose N is divisible by  $2^p$ . Suppose  $u, v \in l^2(\mathbb{Z}_N)$  are such that the system matrix A(n) in  $A(n) = \frac{1}{\sqrt{2}} \begin{bmatrix} \hat{u}(n) & \hat{v}(n) \\ \hat{u}(n+M) & \hat{v}(n+M) \end{bmatrix}$  is unitary for all n. Let  $u_1 = u$  and  $v_1 = v$  and, for all  $l = 2, 3, \ldots p$ , define  $u_1$  by equation  $u_1(n) = \sum_{k=0}^{2^{l-1}-1} u_1 \binom{n+\frac{kN}{2^{l-1}}}{2^{l-1}}$  and  $v_1$  similarly with  $v_1$  in place of  $u_1$ . Then show that  $u_1, v_1, u_2, v_2, \ldots, u_p, v_p$  is a  $p^m$  stage wavelet filter sequence.

#### Unit - II

- 10. a) Let {a<sub>j</sub>}<sub>jeZ</sub> be an orthonormal set in a Hilbert space H. Then prove that the following are equivalent:
  - i)  $\{a_i\}_{i\in\mathbb{Z}}$  is complete. The near  $A^{(i)}$  is  $A^{(i)}$  is complete. The near  $A^{(i)}$  is  $A^{(i)}$  is complete.
  - ii) For all  $f, g \in H$ ,  $\langle f, g \rangle = \sum_{j \in \mathbb{Z}} \langle f, a_j \rangle \langle \overline{g, a_j} \rangle$
  - iii) For all  $\in H$ ,  $\|f\|^2 = \sum_{j \in \mathbb{Z}} |\langle f, a_j \rangle|^2$ .
  - b) Let  $\Sigma_{n\in\mathbb{Z}}w(n)$  be a series of complex numbers. Prove that  $\Sigma_{n\in\mathbb{Z}}w(n)$  converges if and only if, for all  $\epsilon>0$ , there exists an integer N such that  $\left|\sum_{n=-m}^{-k}w(n)+\sum_{n=k}^{m}w(n)\right|<\epsilon$  for all  $m\geq k>N$ .
- 11. a) Suppose  $f: [-\pi, \pi) \to \mathbb{C}$  is continuous and bounded, say  $|f(\theta)| \le M$  for all  $\theta$ . If  $\left\langle f, e^{in\theta} \right\rangle = \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} f(\theta) \, e^{-in\theta} \, d\theta = 0$  for all  $n \in \mathbb{Z}$ . Then prove that  $f(\theta) = 0$  for all  $\theta \in [-\pi, \pi)$ .
  - b) Suppose  $T:L^2\left([-\pi,\,\pi)\right)\to L^2\left([-\pi,\,\pi)\right)$  is a bounded, translation-invariant linear transformation. Then prove that for each  $m\in\mathbb{Z}$ , there exists  $\lambda_m\in\mathbb{C}$ , such that  $T(e^{im\theta})=\lambda_m e^{im\theta}$ .
- 12.a) Suppose w,  $z \in l^1(\mathbb{Z})$  then prove that the set  $\{R_{2k}w\}_{k\in\mathbb{Z}}$  is orthonormal if and only if  $|\hat{w}(\theta)|^2 + |\hat{w}(\theta+\pi)|^2 = 2$  for all  $\theta \in [0,\pi)$ .
  - b) Suppose  $u \in l^1(\mathbb{Z})$  and  $\{R_{2k}u\}_{k\in\mathbb{Z}}$  is orthonormal in  $l^2(\mathbb{Z})$ . Define a sequence  $v \in l^1(\mathbb{Z})$  by  $v(k) = (-1)^{k-1} \ \overline{u(1-k)}$  then prove that  $\{R_{2k}v\}_{k\in\mathbb{Z}} \cup \{R_{2k}u\}_{k\in\mathbb{Z}}$  is a complete orthonormal system in  $l^2(\mathbb{Z})$ .