NET NO 1800 1801 TO 18 AND 18 TO 1801 TO 1800 TO 1801

Reg.	No.	:	
Name	e:		more toll of

IV Semester M.Sc. Degree (Reg.) Examination, April 2019
(2017 Admission Onwards)

MATHEMATICS

MAT4C16: Differential Geometry

	Max. Marks : 8	00
ime : 3 Hours	Max. Marks . C	οU

PART – A

Answer any four questions. Each question carries 4 marks.

- 1. Define a vector field and illustrate it with an example.
- Let f: U → IR be a smooth function on U, U open in IRⁿ. Show that the graph of f is an n-surface in IRⁿ⁺¹.
- 3. Show that the spherical image of an n-surface S with orientation \mathbb{N} is the reflection through the origin of the spherical image of S with orientation $-\mathbb{N}$.
- 4. Find the velocity, the acceleration and the speed of the parametrized curve $\alpha(t) = (\cos t, \sin t, t)$.
- 5. Define length of a parametrized curve in \mathbb{R}^{n+1} and show that it is invariant under reparametrization.
- 6. Describe a parametrized torus in IR4.

 $(4 \times 4 = 16)$

K19P 0173

PART - B

Answer any four questions without omitting any Unit. Each question carries 16 marks.

Unit - I

- a) Let X be a smooth vector field on an open set U ⊂ IRⁿ⁺¹ and let p ∈ U. Prove the existence of the maximal integral curve of X through p.
 - b) Sketch typical level curves and the graph of the function f: ℝ² → ℝ defined by f(x₁, x₂) = -x₁² + x₂².

P.T.O.

- 8. a) Let U be an open set in \mathbb{R}^{n+1} and let $f: U \to \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f and let c = f(p). Prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.
 - b) Let $f: U \to \mathbb{R}$ be a smooth function and let $\alpha: I \to U$ be an integral curve of ∇f .
 - i) Show that $\frac{d}{dt} (f \circ \alpha) (t) = \| \nabla f(\alpha(t)) \|^2$ for all $t \in I$.
 - ii) Show that for each $t_n \in I$, the function f is increasing faster along α at $\alpha(t_n)$ then along any other curve passing through $\alpha(t_0)$ with the same speed.
- 9. a) State and prove the Lagrange multiplier theorem.
 - b) Prove that each connected n-surface in \mathbb{R}^{n+1} has exactly two orientations.
 - c) Define an oriented n-surface. Give an example of an "unoriented 2-surface" with justification.

- 10. a) Prove that for a compact connected oriented n-surface S in \mathbb{R}^{n+1} with $S = f^{-1}(c), f : \mathbb{R}^{n+1} \to \mathbb{R}$ is a smooth function with $\nabla f(p) \neq 0$ for all $p \in S$, the Gauss map N : S → Sⁿ is onto.
 - b) Prove that geodesics have constant speed.
- 11. a) Let S be an n-surface in \mathbb{R}^{n+1} , let $\alpha: I \to S$ be a parametrized curve in S, let $t_{_0} \in I$ and let $\mathbb{V} \in S_{\alpha(t_0)}$. Prove that there exists a unique vector field \mathbb{V} tangent to S along α , which is parallel and has $V(t_0) = V$.
 - b) Let S be an n-surface in \mathbb{R}^{n+1} , let $\alpha:I\to S$ be a parametrized curve and let \mathbb{X} and \mathbb{Y} be vector fields tangent to S along α . Verify that

i)
$$(X + Y)' = X' + Y'$$
 and

ii)
$$(f \mathbb{X})' = f' \mathbb{X} + f \mathbb{X}'$$

for all smooth function f along α .

- 12. a) Prove that the Weingarten map is self-adjoint.
 - b) Define a local parametrization of plane curve. Find a global parametrization of the curve oriented by $\nabla f / \| \nabla f \|$ where f is the function defined by the left side of the equation $ax_1 + bx_2 = c$, $(a, b) \neq (0, 0)$.

Unit - III

- 13. a) On each compact oriented n-surface S in IRn+1, prove that there exists a point p such that the second fundamental form at p is definite.
 - b) Define a differential 1-form. Prove that for each 1-form W on U(U open in IRⁿ⁺¹) there exist unique functions $f_i:U\to {\rm I\!R}$, i=1,2,...,n+1 such that $W=\sum_i f_i\;dx_i$.
- 14. a) Find the Gaussian curvature of the ellipsoid $(x_1^2/a^2) + (x_2^2/b^2) + (x_3^2/c^2) = 1$ (a, b, c all # 0) oriented by its outward normal.
 - b) Let ψ be the parametrized torus in \mathbb{R}^3 : $\psi(\theta, \phi) = ((a + b \cos \phi) \cos \theta, (a + b \cos \phi) \sin \theta, b \sin \phi)$ Find its Gaussian curvature.
- 15. a) Define an n-surface S in IRn+k (k ≥ 1). With usual notations express S in the form $S = \bigcap_{i=1}^{K} f_i^{-1}(c_i)$. Define the tangent space S_p at $p \in S$ and the normal space to S at p. Illustrate a 1-surface in IR3 with its tangent space and normal space at a point p.
 - b) State and prove the inverse function theorem for n-surfaces. $(4 \times 16 = 64)$