- ii) Suppose f, $g \in L^2(\mathbb{R})$. Then prove that inequality $\int\limits_{\mathbb{R}} |f(x-y)g(y)| dy < \infty$ holds for a.e. $x \in \mathbb{R}$. In this case $f * g \in L^1(\mathbb{R})$ with $||f * g||_1 \le ||f||_1 ||g||_1$.
- iii) Suppose $f \in L^2(\mathbb{R})$ and $g \in L^1(\mathbb{R})$. Then prove that $\int_{\mathbb{R}} |f(x-y)g(y)| dy < \infty$ holds for a.e. $x \in \mathbb{R}$. In this case prove that, $f \star g \in L^2(\mathbb{R})$ with $||f \star g|| \le ||f|| ||g||_1$.
- b) Suppose f, $g \in L^2(\mathbb{R})$ and x, $y \in \mathbb{R}$. Then prove that
 - i) $\langle R_x f, R_y g \rangle = \langle f, R_{y-x} g \rangle$
 - ii) $\langle f, R_y g \rangle = f * \tilde{g}(y)$.
- 14. a) Suppose $f \in L^1(\mathbb{R})$ and $\hat{f} \in L^1(\mathbb{R})$. Then prove that $\frac{1}{2\pi} \int\limits_{\mathbb{R}} \hat{f}(\xi) e^{ix\xi} d\xi = f(x)$ at every Lebesgue point x of f.
 - b) Suppose f ∈ L²(ℝ) and let ∈ > 0. Then prove that there exists a C² function g with compact support, satisfying ||f g|| < ∈.
- 15. a) Suppose f, $g \in L^2(\mathbb{R})$. Then prove that

i)
$$\langle \hat{f}, \hat{g} \rangle = 2\pi \langle f, g \rangle$$

ii)
$$||\hat{f}|| = \sqrt{2\pi} ||f||$$

b) Suppose $f \in L^2(\mathbb{R})$. Then prove that $f = (\hat{f})^{\vee}$ and $f = (\check{f})^{\wedge}$. (4×16=64)

Reg. No. :

Name :

IV Semester M.Sc. Degree (Reg.) Examination, April 2019 (2017 Admission Onwards) MATHEMATICS

Paper - MAT 4E 02 : Fourier and Wavelet Analysis

Time: 3 Hours

Max. Marks: 80

Instructions: 1) Notations are as in prescribed text book.

 Answer any four questions from Part – A. Each question carries 4 marks.

 Answer any four questions from Part – B without omitting any Unit. Each question carries 16 marks.

PART -A

- 1. Suppose $z, w \in l^2(\mathbb{Z}_N)$. For any $k \in \mathbb{Z}$, then prove that $z * \widetilde{w}(k) = \langle z, R_K w \rangle$ where $R_v w(n) = w (n k)$.
- 2. Let $\sum_{n \in \mathbb{Z}} w(n)$ be a series of complex numbers. Prove that $\sum_{n \in \mathbb{Z}} w(n)$ converges if and only if, for all $\epsilon > 0$, there exists an integer N such that

$$\left|\sum_{n=-m}^{-k}w(n)+\sum_{n=k}^{m}w(n)\right|<\in\text{for all }m\geq k>N.$$

- Suppose M ∈ Z, {x_n}_{n=M}[∞] is a sequence in a complex inner product space X, and {x_n}_{n=M}[∞] converges in X to some x ∈ X. Prove that {x_n}_{n=M}[∞] is a Cauchy sequence.
- Suppose z, w ∈ l²(Z). Then prove that z̄, z* ∈ l²(Z) and R_KZ ∈ l²(Z), for all k ∈ Z.
- Prove that l¹ (Z) is a vector space with the usual component wise addition and scalar multiplication.
- Write a short note on the pth stage wavelet system for I² (Z).

 $(4 \times 4 = 16)$

P.T.O.

PART - B

Unit - I

- 7. a) Suppose $M \in \mathbb{N}$, N = 2M and $w \in \ell^2(\mathbb{Z}_N)$. Then show that $\{R_{2K}w\}_{K=0}^{M-1}$ is an orthonormal set with M elements if and only if $\|\hat{w}(n)\|^2 + \|\hat{w}(n+M)\|^2 = 2$ for n = 0, 1, ..., M-1.
 - b) Define first stage wavelet basis for $l^2(\mathbb{Z}_N)$.
- 8. Explain the construction of Daubechies's D₆ wavelets on Z_N.
- 9. Suppose N is divisible by 2^l , $g_{l-1} \in l^2(\mathbb{Z}_N)$ and the set $\{R_{2^{l-1}k}g_{l-1}\}_{k=0}^{\lfloor \frac{N}{2^{l-1}}\rfloor-1}$ is orthonormal with $N/2^{l-1}$ elements. Suppose $u_lv_l \in l^2(\mathbb{Z}_{N/2}^{l-1})$ and the system matrix $A_l(n)$ in equation $A_l(n) = \frac{1}{\sqrt{2}}\begin{bmatrix} \hat{u}_l(n) & \hat{v}_l(n) \\ \hat{u}_l(n+\frac{N}{2^l}) & \hat{v}_l(n+\frac{N}{2^l}) \end{bmatrix}$ is unitary for all $n=0,1,\ldots,(N/2^l)-1$. Define $f_l=g_{l-1}\star U^{l-1}(v_l)$ and $g_l=g_{l-1}\star U^{l-1}(u_l)$. Then prove that $\left\{R_{2^lk}f_l\right\}_{k=0}^{(N/2^l)-1} \cup \left\{R_{2^lk}g_l\right\}_{k=0}^{(N/2^l)-1}$ is an orthonormal set with $N/2^{l-1}$ elements.

Unit - II

- 10. a) Suppose H is a Hilbert space, $\{a_j\}_{j\in\mathbb{Z}}$ is an orthonormal set in H, and $z = (z(j))_{j\in\mathbb{Z}} \in \ell^2(\mathbb{Z}).$ Then prove that the series $\sum_{j\in\mathbb{Z}} z(j)a_j$ converges in H, and $\left\|\sum_{j\in\mathbb{Z}} z(j)a_j\right\|^2 = \sum_{j\in\mathbb{Z}} |z(j)|^2.$
 - b) Suppose $z = (z(n))_{n \in \mathbb{Z}} \in l^2(\mathbb{Z})$. Then prove that the series $\sum_{n \in \mathbb{Z}} z(n)e^{in\theta}$ converges to an element of $L^2([-\pi, \pi))$.

K19P 0175

- 11. a) Suppose H is a Hilbert space and T: H \rightarrow H is a bounded linear transformation. Suppose the series $\sum_{n \in \mathbb{Z}} x_n$ converges in H. Then prove that $T\left(\sum_{n \in \mathbb{Z}} x_n\right) = \sum_{n \in \mathbb{Z}} T(x_n)$, where the series on the right converges in H.
 - b) Show that the Fourier transform on $l^2(\mathbb{Z})$ is one to one and onto, with inverse. For $z \in l^2(\mathbb{Z})$, $z(n) = (\hat{z})^\vee(n) = \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} \hat{z}(\theta) e^{-in\theta} d\theta$.
- 12. a) Suppose $M \in \mathbb{N}$ and N = 2M. Suppose $u, v \in l^1(\mathbb{Z})$ are such that $\left\{R_{2k}v\right\}_{k \in \mathbb{Z}} \cup \left\{R_{2k}u\right\}_{k \in \mathbb{Z}}$ is a first stage wavelet system for $l^2(\mathbb{Z})$. Define $u_{(N)}, v_{(N)} \in l^2(\mathbb{Z}_N)$ by $u_{(N)}(n) = \sum_{k \in \mathbb{Z}} u(n+kN)$ and $v_{(N)}(n) = \sum_{k \in \mathbb{Z}} v(n+kN)$. Then prove that $\left\{R_{2K}v_{(N)}\right\}_{K=0}^{M-1} \cup \left\{R_{2K}u_{(N)}\right\}_{K=0}^{M-1}$ is a first stage wavelet basis for $l^2(\mathbb{Z}_N)$.
 - b) Suppose $\mathbf{u}_{l^*} \, \mathbf{v}_l \in l^*$ (\mathbb{Z}) for each $l \in \mathbb{N}$, and the system matrix $\mathbf{A}_l(\theta)$ defined in equation $\mathbf{A}_l(\theta) = \frac{1}{\sqrt{2}} \begin{bmatrix} \hat{\mathbf{u}}_l(\theta) & \mathbf{v}_l(\theta) \\ \hat{\mathbf{u}}_l(\theta+\pi) & \hat{\mathbf{v}}_l(\theta+\pi) \end{bmatrix}$ is unitary for all $\theta \in [0,\pi)$. Define $\mathbf{f}_1 = \mathbf{u}_1, \, \mathbf{g}_1 = \mathbf{v}_1$ and inductively, for $l \in \mathbb{N}$, $l \geq 2$, define \mathbf{f}_l and \mathbf{g}_l by equation $\mathbf{f}_l = \mathbf{g}_{l-1} \star \mathbf{U}^{l-1} \, (\mathbf{v}_1), \, \mathbf{g}_l = \mathbf{g}_{l-1} \star \mathbf{U}^{l-1} \, (\mathbf{u}_l).$ For each $l \in \mathbb{N}$, define \mathbf{V}_{-l} as in equation $\mathbf{V}_{-l} = \left\{ \mathbf{E}_{\mathbf{k} \in \mathbb{Z}} \mathbf{Z}(\mathbf{k}) \mathbf{R}_{2^l} \mathbf{t}_{\mathbf{k}} \mathbf{g}_l : \mathbf{z} = (\mathbf{z}(\mathbf{k}))_{\mathbf{k} \in \mathbb{Z}} \in l^2(\mathbb{Z}) \right\}.$ Suppose $\bigcap_{l \in \mathbb{N}} \mathbf{V}_{-l} = \{0\}$. Define B as in equation $\mathbf{B} = \{\mathbf{R}_{2^l \mathbf{k}} \mathbf{f}_l : \mathbf{k} \in \mathbb{Z}, l \in \mathbb{N}\}.$ Then prove that B is a complete orthonormal set in $l^2(\mathbb{Z})$.

Unit - III

13. a) i) Suppose f, $g \in L^2(\mathbb{R})$. Then prove that inequality $\int_{\mathbb{R}} \left| f(x-y)g(y) \right| dy < \infty$ holds for all $x \in \mathbb{R}$. In this case f * g is bounded and $\left| f * g(x) \right| \le \|f\| \|g\|$ for all $x \in \mathbb{R}$.