

Reg. No.	:	
----------	---	--

Name :

Fourth Semester M.Sc. Degree (Reg./Suppl./Imp.) Examination, March 2018
MATHEMATICS

(2014 Admission Onwards)

MAT4E05 : Fourier and Wavelet Analysis

Time: 3 Hours

Max. Marks: 60

Instruction: Notations are as in prescribed text book.

PART - A

Answer any four questions. Each question carries 3 marks.

- Define the down sampling operator D and the up sampling operator U. Also find U₀D (z) for z∈ l² (Z_N).
 - 2. For $u, v \in l^2(\mathbb{Z}_N)$, prove that $\langle \tilde{u}, R_{2k} \tilde{v} \rangle = \langle v, R_{2k} u \rangle$.
 - 3. Suppose $\{z_k\}_{k=0}^{\infty}$ is a sequence in $l^2(\mathbb{Z})$ and suppose $z_k \to z$ in $l^2(\mathbb{Z})$. Prove that $\lim_{k \to \infty} z_k(n) = z(n)$ for each $n \in \mathbb{Z}$.
 - 4. Show that ℓ^2 (ZZ) is not closed with respect to convolution.
 - 5. If $f \in L^1(\mathbb{R})$, show that $\left| \int_{\mathbb{R}} f(x) dx \right| \leq \int_{\mathbb{R}} |f(x)| dx$
 - 6. Suppose $\mu : \mathbb{R} \to \mathbb{C}$ is multiplicative, μ is not identically zero and μ is differentiable at zero. Prove that $\mu(x) = e^{cx}$ for some $c \in \mathbb{C}$. (4×3=12)

PART - B

Answer any four questions without omitting any Unit. Each question carries 12 marks.

Unit - I

- 7. a) Let $w \in l^2(\mathbb{Z}_N)$. Prove that $\{R_k w\}_{k=0}^{N-1}$ is an orthonormal basis for $l^2(\mathbb{Z}_N)$ if and only if $|\hat{w}(n)| = 1$ for all $n \in \mathbb{Z}_N$.
 - b) Suppose $M \in \mathbb{N}$, N = 2M and $w \in l^2(\mathbb{Z}_N)$. Prove that $\{R_{2k}w\}_{k=0}^{M-1}$ is an orthonormal set with M elements if and only if $|\hat{w}(n)|^2 + |\hat{w}(n+M)|^2 = 2$, for $n = 0, 1, \ldots, M-1$.

K18P 0325

- 8. a) Give an example of a first stage Shannon wavelet basis with justification. Is your Shannon basis real valued ? Give reason.
 - b) Suppose $M \in \mathbb{N}$, N = 2M and $u \in l^2(\mathbb{Z}_N)$ such that $\{R_{2k}u\}_{k=0}^{M-1}$ is an orthonormal set with M elements. Define $v \in l^2(\mathbb{Z}_N)$ by $v(k) = (-1)^{k-1} \overline{u(1-k)}$ for all k. Prove that $\{R_{2k}v\}_{k=0}^{M-1} \cup \{R_{2k}u\}_{k=0}^{M-1}$ is a first stage wavelet basis for $l^2(\mathbb{Z}_N)$.
- 9. Assume N/2^p is an integer greater than 6, where p is some positive integer. Starting with the identity $\left(\cos^2\left(\frac{\pi n}{N}\right) + \sin^2\left(\frac{\pi n}{N}\right)\right)^5 = 1$, construct a first stage wavelet basis for l^2 (\mathbb{Z}_N).

10. a) Prove that the space I2 (Z) is complete.

- b) Suppose $f \in L^1([-\pi, \pi))$ and $\langle f, e^{in\theta} \rangle = 0$ for all $n \in \mathbb{Z}$. Prove that $f(\theta) = 0$ a.e.
- 11. a) Define the Fourier transform on $l^2(\mathbb{Z})$ and the inverse Fourier transform on $L^2([-\pi, \pi))$. Prove that they are inverses of each other.
 - b) Suppose $w \in l^1(\mathbb{Z})$ and $z \in l^2(\mathbb{Z})$. Prove that $(z*w)^{\wedge}(\theta) = \hat{z}(\theta) \hat{w}(\theta)$ a.e.
- a) Suppose u, v ∈ l¹(ℤ). Prove that B= {R_{2k}v}_{k∈ℤ} ∪ {R_{2k}u}_{k∈ℤ} is a complete orthonormal set in l²(ℤ) if and only if the system matrix A(θ) is unitary for all θ∈ [0, π).
 - b) Prove that a bounded translation invariant linear transformation $T: l^2(\mathbb{Z}) \rightarrow l^2(\mathbb{Z})$ is a convolution operator.

Unit - III

- a) Define the convolution f*g of f, g : R → C. If f, g ∈ L²(R), prove that f*g is bounded and |f*g(x)| ≤ ||f|| ||g|| for all x ∈ R.
 - b) If f, $g \in L^1(\mathbb{R})$, prove that $f * g \in L^1(\mathbb{R})$ with $||f * g||_1 \le ||f||_1 ||g||_1$.
 - c) For f, $g \in L^2(\mathbb{R})$ and x, $y \in \mathbb{R}$, prove that $\langle R_x f, R_y g \rangle = \langle f, R_{y-x} g \rangle$.
- 14. a) Define a Lebesgue point of f∈L¹(R). For f∈L¹(R), prove that almost every point of R is a Lebesgue point of f.
 - b) Define $f \in L^1(\mathbb{R})$ by f(x) = 1 for $\frac{1}{n} < x < \frac{1}{n} + \frac{1}{2^n}$, n = 1, 2, ... and f(x) = 0 for all other x. Prove that f is not continuous at x = 0 but 0 is a Lebesgue point of f.
- 15. a) Suppose $f \in L^1(\mathbb{R})$ and $\hat{f} \in L^1(\mathbb{R})$. Prove that $\frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\xi) e^{ix\xi} = f(x)$ at every Lebesgue point x of f. Also deduce the uniqueness of the Fourier transform in $L^1(\mathbb{R})$.
 - b) Suppose f, $g \in L^1(\mathbb{R})$ and $\hat{f}, \hat{g} \in L^1(\mathbb{R})$. Prove that $\langle \hat{f}, \hat{g} \rangle = 2\pi \langle f, g \rangle$. (4×12=48)