THE RESIDENCE OF THE PARTY OF T

Let Silve 2 district in section of an old to 2 in a Shore geodesic in Swith 6 -

It is and the angle between X and & are constant along a.

Prove that the Weingarten map is self adjoint.

(2, a) Prove that local parametrzation of plane curves are unique upto

S) Let $\alpha(t)=(x(t),y(t))$, t $\alpha(t)$ be a local parametrization of the openled plane

gainst O. Show that $x_0 \cdot x_1 = (xy' - yx') \cdot (x'' + y'')^{y'}$.

HILL THAT

3. st. Ust C be an oriented plane curve, then prove that there exists a global curve medicalion of C iff C is connected.

b) Define arrexact differential 1-formand show that the integral of an exact

Let S be an entented n-surface in EC and let V be a unit vector in Sp. p a S-

Than prove that those outst an open set V __ 12" consening P auch that S windyn, V is aplane curve and the curveture at P of this curve in equal to the

And succession of the successi

The state of the s

5 et aver a regulation of the Print and test a Union provide that the excellent

open set V about P N grad and a parametrized insurface of "U - 12" such

If the Signam months of the 10 to 10

Re-II e notificamente land fine of themself and Re-II e

K18P 0322

Reg.	No.	:		
------	-----	---	--	--

Name:

Fourth Semester M.Sc. Degree (Reg./Suppl./Imp.)
Examination, March 2018
(2014 Admission Onwards)
MATHEMATICS

MAT 4C16 : Differential Geometry

Time: 3 Hours Max. Marks: 60

PART-A

Answer any four questions. Each question carries 3 marks.

 $(4 \times 3 = 12)$

- 1. Define level sets and graph of a function. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x_1, x_2) = -x_1^2 + x_2^2$. Sketch its level sets and graph of the function.
- 2. Find the two orientations on the 2-sphere $x_1^2 + x_2^2 + x_3^2 = 4$.
- 3. Show that if $\alpha: I \to \mathbb{R}^{n+1}$ is a parametrized curve with constant speed then $\ddot{\alpha}(t)$ is orthogonal to $\dot{\alpha}(t) \ \forall \ t \in I$.
- 4. Find the Weingarten map of the cylinder $x_2^2 + x_3^2 = a^2$ in \mathbb{R}^3 , $a \neq 0$.
- 5. Find the length of the parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$, where $\alpha(t) = (t^2, t^3)$, I = [0, 2], n = 1.
- 6. Express a torus as a parametrized surface in \mathbb{R}^4 .

P.T.O.

7

PART-B

Answer any four questions without omitting any Unit. Each question carries 12 marks.

(4×12=48)

Fourth Semester M.S. I -TINU (Rog/Suppl./mp.)

- a) Establish the existence and uniqueness of the maximal integral curve of a smooth vector field X (on an openset U ⊆ Rⁿ⁺¹) through P in U.
 - b) Let X be a vector field X(P) = (P, X(P)) where $X(x_1, x_2) = (-x_2, x_1)$. Find the integral curve of X through the point (1, 0).
- 8. a) Let U be an open set in ℝ^{r+1} and let f: U → ℝ be smooth. Let p ∈ U be a regular point of f and c = f(p). Then prove that the set of all vectors tangent to f⁻¹(c) at p equal to [∇f(p)][⊥].
 - b) Let f: U → ℝ be a smooth function. Let α: I → U be an integral curve of ∇f then show that for each t₀ ∈ I, the function f is increasing faster along α at α (t₀) than along any other curve passing through α (t₀) with the same speed.
- 9. a) State and prove Lagrange multiplier theorem.
 - b) Show that the extreme values of the function $g(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$ where a, b, c. $\in \mathbb{R}$ on the unit circle $x_1^2 + x_2^2 = 1$ are the eigen values of the
 - symmetric matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$.
 - c) Sketch the cylinder $f^{-1}(0)$ where $f(x_1, x_2, x_3) = x_1 x_2^2$.

UNIT-II

- 10. a) Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Then prove that the Gauss map maps S onto the unit sphere S^n .
 - b) Let S denote the cylinder $x_1^2 + x_2^2 = r^2$ of radius r > 0 in \mathbb{R}^3 . Show that α is a geodesic of S iff α is of the form α (t) = (rcos(at + b), rsin(at + b), ct + d) for some a, b, c, d $\in \mathbb{R}$.

11. a) Let S be a 2-surface in \mathbb{R}^3 and let $\alpha:I\to S$ be a geodesic in S with $\dot{\alpha}\neq 0$, then show that a vector field \mathbb{X} tangent to S along α is parallel along α iff both $\|\mathbb{X}\|$ and the angle between \mathbb{X} and $\dot{\alpha}$ are constant along α .

-3-

- b) Prove that the Weingarten map is self adjoint.
- a) Prove that local parametrization of plane curves are unique upto reparametrization.
 - b) Let α (t) = (x(t), y(t)), t \in I be a local parametrization of the oriented plane curve C. Show that $K \circ \alpha = (x'y'' y'x'')/(x'^2 + y'^2)^{\frac{3}{2}}$.

UNIT - III

- a) Let C be an oriented plane curve, then prove that there exists a global parametrization of C iff C is connected.
 - b) Define an exact differential 1-form and show that the integral of an exact 1-form over a closed curve is always zero.
- 14. a) Let S be an oriented n-surface in ℝⁿ⁺¹ and let V be a unit vector in Sp, p ∈ S.
 Then prove that there exist an open set V ⊆ ℝⁿ⁺¹ containing P such that S ∩ N(V) ∩ V is a plane curve and the curvature at P of this curve is equal to the normal curvature.
 - b) Let S be the hyperboloid $-x_1^2 + x_2^2 + x_3^2 = 1$ in \mathbb{R}^3 oriented by unit normal vector field $\mathbb{N}(P) = \left(P, \frac{-x_1}{\|P\|}, \frac{x_2}{\|P\|}, \frac{x_3}{\|P\|}\right)$ for all $(x_1, x_2, x_3) \in S$. Then find the normal curvature of S at P = (0, 0, 1).
- 15. a) Let S be an n-surface is \mathbb{R}^{n+1} and let $P \in S$ then prove that there exists an open set V about P is \mathbb{R}^{n+1} and a parametrized n-surface $\phi: U \to \mathbb{R}^{n+1}$ such that ϕ is one to one map from U onto V \cap S.
 - b) Let S be an n-surface in \mathbb{R}^{n+1} and let $f: S \to \mathbb{R}^k$. Then prove that f is smooth iff $f \circ \phi: U \to \mathbb{R}^k$ is smooth for each local parametrization $\phi: U \to S$.