K17P 0409

Reg. No. :

Name :

Fourth Semester M.Sc. Degree (Reg./Supple./Imp.) Examination, March 2017 (2014 Admission Onwards)

MATHEMATICS

MAT4E05 : Fourier and Wavelet Analysis

Time: 3 Hours Max. Marks: 60

Instructions: 1) Notations are as in prescribed text book.

- Answer any four questions from Part A. Each question carries 3 marks.
- Answer any four questions from Part B without omitting any Unit. Each question carries 12 marks.

- 1. Define conjugate reflection of $w \in l^2(\mathbb{Z}_N)$ show that $(\tilde{w}) \wedge (n) = \overline{w \wedge (n)}$.
- 2. Explain how one can generate a pth stage wavelet basis. (Make suitable assumptions)
- 3. Prove that $l^1(\mathbb{Z})$ is closed w.r.t. convolution.
- 4. Does there exist a frequency localized orthonormal basis for $l^2(\mathbb{Z})$ consisting of translates of a vector in $l^1(\mathbb{Z})$?
- 5. For $f \in L^1(\mathbb{R})$, prove that $(R_v f) \wedge (\xi) = e^{-iy\xi} f^{\wedge}(\xi)$ a.e.
- 6. Prove or disprove. There is an identity for convolution in $L^2(\mathbb{R})$. (4×3=12)

PART-B

Unit - 1

- 7. a) Show that $u = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, 0, 0, 0, 0\right)$ is a father wavelet.
 - b) Find out a mother wavelet v so that u and v generate a first stage wavelet basis.
 - c) Write down the signal z = (4, 8, -8, 4, 8, 16, 4, -4) in terms of the above first stage wavelet basis.

P.T.O.

- 8. Let $N = 2^n$, $1 \le p \le n$ and $z \in l^2(\mathbb{Z}_N)$.
 - a) Define a pth stage wavelet filter sequence.
 - b) Briefly describe how to obtain the output of the analysis phase of the pth stage wavelet filter bank corresponding to the input $z \in l^2(\mathbb{Z}_N)$.
 - c) Show that the analysis phase of the corresponding pth stage wavelet filter can be computed in no more than 4N + Nlog₂ N complex multiplications.
- 9. a) Define up sampling and down sampling operators. If N is even, show that

$$(Dz) \wedge (n) = \frac{1}{2} \left[\hat{z}(n) + \hat{z}\left(n + \frac{N}{2}\right) \right], \text{ for } z \in l^2(\mathbb{Z}_N).$$

b) For $z \in l^2(\mathbb{Z}_N)$, prove that (Uz) $^{\wedge}$ (n) = \hat{z} (n) for all n.

Unit - 2

- 10. a) Define the spaces $L^1[-\pi, \pi)$ and $L^2[-\pi, \pi)$. Give a norm on each and verify the conditions.
 - b) Show that $L^2[-\pi, \pi)$ is strictly contained in $L^1[-\pi, \pi)$.
 - c) Prove that point wise convergence doesn't imply norm convergence in $L^2[-\pi, \pi)$.
- 11. a) Show that a bounded translation invariant linear transformation $T: L^2\left[-\pi, \, \pi\right) \to L^2\left[-\pi, \, \pi\right) \text{ is diagonalised by the complex trigonometric system } \left\{e^{in\theta}\right\}_{n\in\mathbb{Z}}.$

- 12. a) Suppose u∈ l¹(Z) is such that {R_{2k}u}_{k∈Z} is an orthonormal set in l²(Z). Show that this can be extended to a complete orthonormal system (i.e., first stage wavelet system) for l²(Z).
 - b) Let $p \in \mathbb{N}$. For l = 1, 2, ..., p assume that $u_1, v_1 \in l^1(\mathbb{Z})$ are such that the corresponding system matrix $A_l(\theta)$ is unitary for all $\theta \in [0, \pi)$. Suitably defining functions, explain the construction of a p^{th} stage wavelet system for $l^2(\mathbb{Z})$.

Unit-3

- 13. a) Define convolution of two functions f, g: R → C by making suitable assumptions. Establish that it is commutative.
 - b) For $f, g \in L^1(\mathbb{R})$, show that $f * g \in L^1(\mathbb{R})$ and that $(f * g) ^ = \hat{f} \hat{g}$.
- 14. a) State and prove Fourier inversion theorem on $L^1(\mathbb{R})$.
 - b) Show that if two $L^1(\mathbb{R})$ functions have same Fourier transforms a.e., the functions are equal a.e.
- 15. a) For $f, g \in L^2(\mathbb{R})$, prove the relation $\int_{\mathbb{R}} \hat{f} g dx = \int_{\mathbb{R}} \hat{g} f dx$.
 - b) Show that the space L² (ℝ) is not closed w.r.t. convolution. (4×12=48)