by Let 5 be a resocurable subset of 81 and H = L²(E). Fix Z s L²(E) and define Ax = 2to x s L. Find the adjoint A² of A.

It all H to expressible I filbed space and u₁, u₂,... consiliute an orthonormal lessible H. Let (h₁) be a bounded sequence of scalars and A₁ = 2 h₂ (x y₁) u₃ x s H.

A₂ = 2 h₃ (x y₁) u₃ x s H.

Then prove that A = 81 (H) and A is normal. Also find conditions on (h₄) such that A is a prove that A is 0 if the H. Prove that A = 0 if (A₁, y) = 6 tot all x s H.

(A₂ = 0 tot all x s H.

(A₃ = 0 tot all x s H.

(B₄ = 0 tot all x s H.

(C₄ = 0 tot all x s H.

(C₅ = 0 tot all x s H.

(C₆ = 0 tot all x s H.

(C₇ = 0 tot all x s H.

(D₇ = 0 tot all x s H.

	K17P 0405

Reg.	No.	:	
------	-----	---	--

Name :

Fourth Semester M.Sc. Degree (Reg./Supple./Imp.)

Examination, March 2017

(2014 Admission Onwards)

MATHEMATICS

MAT4C15 : Operator Theory

Time: 3 Hours Max. Marks: 60

Instruction: Answer four questions from Part A. Each question carries 3 marks.

Answer four questions from Part B without omitting any Unit. Each question carries 12 marks.

PART-A

- 1. Define eigen spectrum $\sigma_e(A)$ and approximate eigen spectrum $\sigma_a(A)$ of the operator A defined on the normed space X and prove that $\sigma_e(A) \subset \sigma_a(A)$.
- Let X be a finite dimensional normed space. Prove that a sequence x_n → x in X weakly iff if and only it if converges to x in X.
- Let X be a finite dimensional normed space. Prove that X is uniformly convex if and only if it is strictly convex.
- Prove that CL(X, Y) the space of all compact linear maps from the normed space X into the normed space Y is subspace of BL(X, Y).
- 5. Let $H=e^2$ and A(x(1), x(2))=a x(1)+bx(2), c x(1)+dx(2) for $(x(1), x(2))\in H$ and fixed $a, b, c, d \in \mathbb{C}$. Prove that A is normal iff $|b|^2=|c|^2$ and $(a-b)\overline{c}=(\overline{a}-\overline{d})b$.
- Show by examples neither σ(A) nor ω (A) is contained in the other in general,
 where A is a bounded linear operator on the Hilbert space H. (4x3=12)

P.T.O.

K17P 0405

-2-

PART-B

Unit - I

- 7. a) Let X = C([a, b]) with the sup norm. For $x_0 \in X$ and for $x \in X$, let $Ax = x_0x$. Prove that A is bounded linear operator as X and find its spectrum.
 - b) Prove or disprove : Every bounded sequence in / has a weak convergent subsequence.
- 8. a) State and prove spectral radius formula for an operator on a nonzero Banach space over ©.
 - b) Prove that every bounded sequence in X' has a weak * convergent subsequence provided X is a separable normed space.
- 9. a) Let X be a Banach space and $A \in BL(X)$. Let $k \in IK$ such that $|K|^p > ||A^p||$ for some positive integer p. Then prove that $k \notin \sigma(A)$ and $(A kI)^{-1} = -\sum_{n=0}^{\infty} \frac{A^n}{K^{n+1}}$.
 - b) Let $1 \le p < \infty$, $\sqrt[4]{p} + \sqrt[4]{q} = 1$. Show that the dual of \mathbb{K}^n with $\|\cdot\|_p$ is linearly isometric to \mathbb{K}^n with $\|\cdot\|_q$.

Unit - II

- 10. a) Show that every closed subspace of a reflexive normed space is reflexive.
 - b) Let X and Y be Banach spaces. Suppose F: X→Y is a compact linear map such that R(F) is closed in Y. Then prove that F is continuous and F has finite rank.
- Let X and Y be normed spaces and F∈BL(X, Y). If F∈CL(X, Y) then prove that
 F' ∈ CL(Y', X'). Prove that the converse holds if Y is a Banach space.
- a) Let X be an infinite dimensional normed space and A∈CL(X). Prove that σ_a(A) non empty.
 - b) Prove that the eigen spectrum of a compact linear operator on a normed space X is countable.

K17P 0405

Unit - III

-3-

- a) Let H be a Hilbert space and A∈BL(H). Prove that A is onto if and only if A* is bounded below.
 - b) Let E be a measurable subset of \mathbb{R} and $H = L^2(E)$. Fix $Z \in L^{\infty}(E)$ and define Ax = 2x, $x \in H$. Find the adjoint A^* of A.
- 14. a) Let H be separable Hilbert space and u₁, u₂,... constitute an orthonormal basis for H. Let (k_n) be a bounded sequence of scalars and

$$A_x = \sum_n k_n \langle x, u_n \rangle u_n, x \in H.$$

Then prove that $A \in BL(H)$ and A is normal. Also find conditions on (k_n) such that A is unitary and self adjoint.

- b) Let A be a self adjoint operator on a Hilbert space H. Prove that A = 0 if $\langle A_x, x \rangle = 0$ for all $x \in H$.
- c) Define a compact operator on a Hilbert space H.
- a) Let H be a separable Hilbert space. Let A ∈ BL(H) be a Hilbert-Schmidt operator.
 Prove that A is compact.
 - b) Let A be a compact operator on a non zero Hilbert space H. Prove that every non zero approximate eigen value of A is an eigen value of A. Also prove that the eigen space corresponding to a non zero eigen value, is finite dimensional.

 $(4 \times 12 = 48)$