DESCRIPTION S KINDS

8L - 1643

t a) Let in be a Hilbert space and A < BL(H). Prove that there is a unique B < BL(H) such that for all x, y < H. <Ax, y> = <x, Bys,

base for H. If $A \in BL(H)$ is defined by the matrix $M = (K_{|k|})$, with mapped to the orthonormal basis $(u_1 u_2 - 1)$ for H. Then prove that the matrix $(K_{|k|})$ defines the

operation A and deduce that the adjoint of the night shift operator on if its the shift operator on if

 $||A|| \times ||A|| + ||A|| \times ||A|$

c) Let A be a normal operator on the Hilbert space II. Proye that #K = va. (A)

then IC = or (A*) and an eigen vector of A corresponding to N is also an eigen vector of A* corresponding to 10. Show by an example this negation of A*.

hold for an arbitrary operator on H.

15. For a bounded linear operator on a Hilbort spece H define W(A), the numerical range of A. Show that a (A) contained in the closure of W(A), and show by

samples matries of (A) nor W(A) is contained in the other. (As 12=48

K16P 0197

Reg.	No.	:	
	112		

Name :

Fourth Semester M.Sc. Degree (Regular/Supplementary/Improvement)
Examination, March 2016

MATHEMATICS (2014 Admission) MAT4C15 : Operator Theory

Time: 3 Hours Max. Marks: 60

Instructions: 1) Answer four questions from Part – A. Each question carries 3 marks.

 Answer four questions from Part – B without omitting any Unit. Each question carries 12 marks.

PART-A

- Define the transpose F' of a bounded linear map F from a normed space X into a normed space Y and prove that F"J_X = J_Y F, where J_X: X → X" and J_Y: Y → Y" are the canonical embeddings.
- Define weak convergence of a sequence (x_n) in a normed space X. Prove that every convergent sequence in any normed space converges weakly. What about the converse? Justify your claim.
- 3. Prove that every compact linear map from a normed space X into a normed Y is continuous. Show by an example the converse is in general is not true.
- Prove that every non zero spectral value of a compact linear operator in a normed space is its eigen value.
- 5. Let $A \in BL(H)$ and $K_1 \neq K_L \in IK$. If $Ax_1 = K_1 x_1$ and $A^+x_2 = \overline{K}_2x_2$ for $x_1 x_2$ in the Hilbert space H, then prove that $x_1 \perp x_2$.
- Prove that the adjoint of any compact operator defined on any Hilbert space H is compact. (4x3=12)

b) Lat X and Y be normed appears. If F = CL(X, Y) then prove that P = CL(Y

PART-B Unit-I

- a) Let X be a Banach space, A ∈ BL(X) and || A^p || < 1 for some positive integer p. Prove that (I – A) is invertible.
 - b) Let X be a normed space such that its dual X' is separable. Then prove that X is separable.
- a) Prove that the set of all invertible operators is open in BL(X), where X is a normed space.
 - b) Let (x_n¹) be a sequence in a Banach space X. Prove that (x_n¹) is bounded and (x_n¹(x)) is a Cauchy sequence in IK for each x in a subset of X whose span is dense in X if and only if (x_n¹) is weak* convergent in X'.
- 9. a) Let $X = I^p$ with $\| \|_p$, $1 \le p \le \infty$. For $x = (x(1), x(2) ...) \in X$, let $Ax = \left(x(1), \frac{x(2)}{2}, \frac{x(3)}{3}...\right)$. Prove that $A \in BL(X)$ and $\| A \|_p = 1$. Also find the spectrum of A.
 - b) Let X be a separable normed space. Prove that every bounded sequence in X' has a weak* convergent subsequence.

Unit - II

- 10. a) Let X be a non zero reflexive space. If f is a continuous linear functional on X prove that there is some x₁ ∈ X such that || x₁ || = 1 and | f (x₁) | = || f ||.
 - b) Let X be a normed space, $A: X \to X$ be linear and $Ax_n = K_n x_n$ for some $0 \neq x_n \in X$ and $K_n \in \mathbb{K}$, $n = 1, 2 \dots$ If $K_n \neq K_m$ whenever $n \neq m$, then prove that i) $\{x_1, x_2 \dots\}$ is a linearly independent subset of X.
 - ii) $K_n \rightarrow 0$ provided A is compact and $\{x_1, x_2, ...\}$ is infinite.
- 11. Show that if X is a Banach space then CL(X) is a closed ideal of BL(X).
- a) Let X be a reflexive space. Prove that every bounded sequence in X has a weak convergent subsequence.
 - b) Let X and Y be normed spaces. If $F \in CL(X, Y)$ then prove that $F' \in CL(Y', X')$.

Unit - III

- 13. a) Let H be a Hilbert space and A ∈ BL(H). Prove that there is a unique B ∈ BL(H) such that for all x, y ∈ H, <Ax, y> = <x, By>.
 - b) Let H be a separable Hilbert space and u_1, u_2, \ldots constitute an orthonormal basis for H. If $A \in BL(H)$ is defined by the matrix $M = (K_{iy})$, with respect to the orthonormal basis $\{u_1, u_2, \ldots\}$ for H then prove that the matrix (\overline{K}_{ji}) defines the operation A^* and deduce that the adjoint of the right shift operator on I^2 is the left shift operator on I^2 .
- 14. a) Let H be a Hilbert space and $A \in BL(H)$. If A is self adjoint then prove that $||A|| = Sup\{| < A \times, x > | : x \in H, ||x|| \le 1\}$
 - b) Let H be a Hilbert space and K = C. Prove that there are unique self adjoint operators B and C on H such that A = B + iC.
 - c) Let A be a normal operator on the Hilbert space H. Prove that if $K \in \sigma_e$ (A) then $\overline{K} \in \sigma_e(A^*)$ and an eigen vector of A corresponding to K is also an eigen vector of A* corresponding to \overline{K} . Show by an example this result may not hold for an arbitrary operator on H.
- 15. For a bounded linear operator on a Hilbert space H define W(A), the numerical range of A. Show that σ(A) contained in the closure of W(A), and show by examples neither σ(A) nor W(A) is contained in the other. (4×12=48)