

Reg. N	lo.	:	
--------	-----	---	--

Name :

Fourth Semester M.Sc. Degree (Regular/Supplementary/Improvement)

Examination, March 2016

MATHEMATICS (2014 Admn.)

MAT 4E05 : Fourier and Wavelet Analysis

Time: 3 Hours

Max. Marks: 60

Instructions: 1) Notations are as in prescribed text book.

- Answer any four questions from Part A. Each question carries 3 marks.
- Answer any four questions from Part B without omitting any unit. Each question carries 12 marks.

PART-A (SA) SA VIJE VIJE I (SA)

- Define a first stage wavelet basis for l² (Z_N). Illustrate.
- Briefly describe how folding lemma can be used in the construction of a pth stage wavelet filter sequence starting with a first stage wavelet basis for l²(Z_n).
- 3. Prove or disprove : A complete orthonormal set of the form $\{R_{2k}w\}_{k\in\mathbb{Z}}$ exists in $l^2(\mathbb{Z})$ for a suitable $w\in l^1(\mathbb{Z})$.
- Define a homogeneous wavelet system and pth stage wavelet system for l²(ZZ).
- 5. Define Lebesgue point of a function in L¹ (IR). Illustrate.
- 6. Suppose that a function $\mu: \mathbb{R} \to \mathbb{C}$ is multiplicative, not identically zero and differentiable at 0. Prove that $\mu(x) = e^{cx}$ for some $c \in \mathbb{C}$.

Unit – 1

- 7. Express the signal z = (1,1,0,-1,1,1,0,-1) w.r.t. the first stage real Shannon wavelet basis.
- 8. Suppose N is divisible by 2^i , that x, y, $w \in l^2 \left(\frac{\mathbb{Z}_N^N}{2^i} \right)$ and $z \in l^2 \left(\mathbb{Z}_N \right)$. Show that $D^i(z) * w = D^i(z*U^i(w))$ and $U^i(x*y) = U^i(x)*U^i(y)$.

K16P 0201

- a) Briefly describe how to obtain the output of the analysis phase of the pth stage recursive wavelet filter bank.
- b) Suppose N = 2ⁿ, 1≤p≤n and u₁, v₁, u₂, v₂..., u_p, v_p form a pth stage wavelet filter sequence. For an input z∈l² (Z_N), the output {x₁, x₂, ..., x_p, y_p} of the analysis phase of the corresponding pth stage wavelet filter can be computed in no more than 4N + Nlog_p N complex multiplications.

Unit - 2

- 10. a) Define l2 (ZZ). Prove its completeness.
- b) Prove that norm convergence in l²(ZZ) implies pointwise convergence but the converse is not true.
 - 11. Let v, $w \in l^1(\mathbb{Z})$ and $z \in l^2(\mathbb{Z})$. Prove the following:
 - a) $z_* w(\theta) = \hat{z}(\theta) \hat{w}(\theta)$ a.e.
 - b) V * (W * Z) = (V * W) * Z
 - 12. a) Let u,v∈ l²(Z). Define system matrix of u and v. Show that u and v generate a first stage wavelet system for l²(Z) if and only if the system matrix A (θ) of u and v is unitary for all θ∈ [0, π).
 - b) Starting with au∈ l¹ (ZZ), where {R₂ku}k∈ Z is orthonormal in l² (ZZ), prove that we can define v∈ l¹ (ZZ) in such a manner that u and v generate a first stage wavelet system for l²(ZZ).

Unit - 3

13. Define approximate identity. Suppose that f∈ L¹ (IR) and that {g₁}₁₂₀ is an approximate identity. Show that for every Lebesgue point x of

$$f \lim_{t \mapsto 0^+} g_t * f(x) = f(x).$$

- 14. a) Show that there is no containing relationship among L1 (IR) and L2 (IR).
 - b) Show that L¹ (IR) \cap L² (IR) is dense in L² (IR).
- 15. a) State and prove Fourier inversion theorem on L1 (IR). Interpret the result.
 - b) Show that Fourier transform of a function in L1 (IR) is bounded and continuous.

Show that Digo was a Digot