M 26988

| Reg. I | 10. :                                                 |
|--------|-------------------------------------------------------|
| Name   | : MARINEN - (a) (sc                                   |
|        | IV Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.) |
|        | Examination, March 2015                               |

Time: 3 Hours

Max. Marks: 60

Instructions: 1) Notations are as in prescribed text book.

- Answer any four questions from Part A. Each question carries 3 marks.
- Answer any four questions from Part B without omitting any Unit. Each question carries 12 marks.

## PART-A

Elective: Wavelets

- 1. Does there exist a frequency localized orthonormal basis for  $l^2(\mathbb{Z}_N)$  formed by the circular translates of a single vector  $w \in l^2(\mathbb{Z}_N)$ .
- 2. For  $z, w \in l^2(\mathbb{Z}_N)$ , show that  $(z*w) \sim = \tilde{z}*\tilde{w}$ .
- 3. Does point wise convergence imply norm convergence in L<sup>2</sup>( $[-\pi \cdot \pi)$ ) ? Justify.
- 4. For  $z, w \in l^1(\mathbb{Z})$  show that  $z * w \in l^1(\mathbb{Z})$ .
- 5. If  $f \in L^2(\mathbb{R})$  and  $g \in L^1(\mathbb{R})$  then show that  $f * g \in L^2(\mathbb{R})$ .
- Show that if two functions in L<sup>1</sup> (IR) have same Fourier transform then the functions are equal a.e.

- a) Write down the first stage Shannon basis for l<sup>2</sup>(Z<sub>8</sub>). Show that they form a first stage wavelet basis for l<sup>2</sup>(Z<sub>8</sub>).
  - b) Express the signal  $z = (1, 0, -1, 0, 1, 0, -1, 0) \in l^2(\mathbb{Z}_8)$ . w.r.t. the second stage Shannon wavelet basis.

U

(a.n.-[anvira Stulle II Ann the P.T.O.

M 26988

-2-



5

7

0

5

6

6

0

8. a) Define upsampling and downsampling operators. If N is even, show that

$$(\hat{D}z)(n) = \frac{1}{2} \left( \hat{z}(n) + \hat{z}\left(n + \frac{N}{2}\right) \right)$$
 7

- b) For  $z \in l^2(\mathbb{Z}_N)$ , prove that  $(\bigcup (\hat{z}))(n) = \hat{z}(n)$  for all n.
- a) Explain the construction of Daubechies D<sub>6</sub> wavelets on Z<sub>N</sub>.
  - b) Assume N is even. Show that Haar wavelet on  $\mathbb{Z}_N$  can be obtained by starting with the identity  $\cos^2\left(\frac{\pi n}{n}\right) + \sin^2\left(\frac{\pi n}{n}\right) = 1$ .

## Unit - II

10. a) Suppose  $f: [-\pi, \pi) \to \mathbb{C}$  is continuous and bounded. Show that

$$f(\theta) = 0 \forall \theta \in [-\pi, \pi) \text{ in case } \int_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta = 0 \forall n \in \mathbb{Z}.$$

- b) Suppose that  $f \in L^1([-\pi, \pi))$  and that  $\int_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta = 0 \ \forall \ n \in \mathbb{Z}$ . Prove that  $f(\theta) = 0$  a.e.
- c) Deduce that the trigonometric system is complete in  $L^2([-\pi,\pi))$ .
- 11. Let  $w \in l^1(\mathbb{Z})$  and  $z \in l^2(\mathbb{Z})$  Prove the following :
  - a)  $(z * \hat{w})(\theta) = \hat{z}(\theta) \hat{w}(\theta)$  a.e.
  - b) Show that we may not have  $z * w \in l^2(\mathbb{Z})$  even if  $z, w \in l^2(\mathbb{Z})$ .
- 12. a) Let  $u, v \in l^{-1}(\mathbb{Z})$ . Show that u and v generate a first stage wavelet system for  $l^2(\mathbb{Z})$  if and only if the system matrix  $A(\theta)$  of u and v is unitary for all  $\theta \in [0, \pi)$ .
  - b) If  $w \in l^1(\mathbb{Z})$ , show that  $\{R_k w\} k \in \mathbb{Z}$  is a complete orthonormal set in  $l^2(\mathbb{Z})$  if

and only if 
$$|\hat{\mathbf{w}}(\theta)|^2 = 1 \forall \theta \in [-\pi, \pi)$$

-3-

M 26988

## Unit - III

|  | 13. | a) | Define approximate identity. If $\{g_t\}$ $t > 0$ is an approximate identity, show that              |    |
|--|-----|----|------------------------------------------------------------------------------------------------------|----|
|  |     |    | $\lim_{t\to 0+gt*f(x)=f(x)}$ at every Lebesgue point x of $f\in L^1(\mathbb{R})$ .                   | 12 |
|  | 14. | a) | Show that neither $L^1(\mathbb{R})$ is contained in $L^2(\mathbb{R})$ nor the other way.             | 8  |
|  |     | b) | Show that the norm in $L^1(\mathbb{R})$ is not induced by any inner product.                         | 4  |
|  | 15. | a) | State and prove Fourier inversion theorem for functions in $L^1(\mathbb{R})$ .                       | 6  |
|  |     | b) | For $f \in L^1(\mathbb{R})$ , show that $\hat{f}$ is a bounded continuous function on $\mathbb{R}$ . | 6  |