

- 9. a) Prove that a necessary condition for J[y] = ∫_a^b F(x, y, y') dx, y(a) = A, y(b) = B to have a minimum for the curve y = y(x) is that F_{y',y'} ≥ 0 at every point of the curve.
 - b) If the extremal y = y(x) corresponds to a minimum of the functional $\int\limits_a^b F\left(x,\,y,\,y'\right)dx = 0 \text{ and if } F_{y'\,y'} > 0 \text{ along this extremal then prove that (a, b)}$ contains no points conjugate to a .
- 10. a) If P is a positive definite symmetric matrix and if [a, b] contains no points conjugate to a, then prove that the quadratic functional $\int\limits_a^b [\left(P\,h',\,h'\right)+\left(Q\,h,\,h\right)]dx$ is positive definite for all h(x) such that h(a) = h(b) = 0.
 - b) Show that the extremals of the functional $\int_a^b F(x, y, y') dx$ have no conjugate points. (4x12=48)

		4					
	1111	Milit	Ш	ш	ш	ma	ı
1 158191	0.68	HEE	BIRE	**	HEER	\$113 IB	ı

M 26986

Reg. No. :

Name :

IV Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.)

Examination, March 2015

MATHEMATICS

Elective: Calculus of Variations

Time: 3 Hours Max. Marks: 60

PART-A

Answer any four questions. Each question carries 3 marks.

- 1. a) Find the extremals of the functional $\int_{a}^{b} (y^2 + {y'}^2 2y \sin x) dx$.
 - b) Prove by direct calculation that the isoscles triangle has the greatest area among all triangles with a given base and given perimeter.
 - c) Prove that one and only one extremal of the functional $\int e^{-2y^2} (y'^2 1) dx$ passes through any two points of the plane with different abscissas.
 - d) Find the transversality conditions for the functional $J[y] = \int_{x_0}^{x_1} f(x, y) \sqrt{1 + {y'}^2} dx$.
 - e) Find the canonical equations of the functional $\int_{a}^{b} (P y'^2 + Qy^2) dx$, where P and Q are functions of x.
 - f) Find the second variation of the functional e^{J[y]}, where J[y] is a twice differentiable function.
 (4x3=12)

PART-B

-2-

Answer any four questions without omitting any Unit. Each question carries 12 marks.

UNIT-I

- a) Explain the concept of variation of a functional J[y]. Prove that differential of a differentiable functional is unique.
 - b) Prove that a necessary condition for the differentiable functional J[y] to have an extremum for y = ŷ is that its variation vanish for y = ŷ.
 - c) Let $J[y] = \int_a^b F(x, y, y') dx$ be defined on the set of function y(x) with continuous first derivative in [a, b] and y(a) = A, y(b) = B. Find a necessary condition for J[y] to have an extremum.
- 3. a) Among all curves whose end points lie on two given vertical lines x = a and x = b, find the curve for which $J[y] = \int_a^b F(x, y, y') dx$ has an extremum.
 - b) Starting from the point (a, A), a heavy particle slides down a curve in the vertical plane. Find the curve such that the particle reaches the vertical line x = b (b ≠ a) in the shortest time.
- 4. a) Let $J[y] = \int_a^b F(x, y, y') dx$ where y = y(x) satisfy y(a) = A, y(b) = B, $K[y] = \int_a^b G(x, y, y') dx = I$. Let J[y] have an extremum for y = y(x). Prove that if y = y(x) is not an extremal of K[y], then there is a constant λ such that y is an extremal of $\int_a^b (F + \lambda G) dx$.
 - b) Among all curves lying on the sphere x² + y² + z² = a² and passing through two given points (x₀, y₀, z₀) and (x₁, y₁, z₁) find the one which has least length.

UNIT - II

-3-

- 5. a) Derive Weierstrass-Erdmann corner conditions in the context of a weak extremum of $\int_a^b F(x, y, y') dx$ where the admissible functions are continuous for $a \le x \le b$ except possibly at some point C(a < c < b) with y(a) = A, y(b) = B.
 - b) Find the extremals of the functional $J[y] = \int_{0}^{4} (y'-1)^2 (y'+1)^2 dx$, y(0) = 0, y(4) = 2 which have just one corner.
- 6. a) Derive the canonical system of Euler equations for

$$J[y_1, y_2, ..., y_n] = \int_a^b F(x, y_1, y_2, ..., y_n, y_1', y_2', ..., y_n') dx$$

- b) Prove that a necessary and sufficient condition for a function Φ = Φ (y₁, ..., y_n, p₁,, p_n) to be a first integral of the system of Euler equations in that the Poisson bracket [Φ, H] vanish identically.
- 7. a) State and prove Noether's theorem on the invariance of the functional $\int\limits_{x_0}^{x_1} F\left(x,\,y,\,y'\right) dx \ \text{under the family of transformations.} \ x^* = \Phi \ (x,\,y,\,y'\,;\,\epsilon),$ $y_i^* = \psi_i \ (x,\,y,\,y';\,\epsilon), \ i=1,\,2,\,...,\,n.$
 - b) State and prove the principle of least action.

UNIT - III

- a) Prove that a necessary condition for a functional J[y] to have a minimum for y = ŷ is that δ² J[y] ≥ 0 for y = ŷ and all admissible h.
 - b) For $J[y] = \int\limits_a^b F(x, y, y') \, dx$ defined for curves y = y(x) with y(a) = A, y(b) = B derive an expression for $\delta^2 J[h]$ and show that it can be written as $\int\limits_a^b \left(P \, h'^2 + Q \, h^2\right) \, dx.$