1100001	min	10000	m	THORE I	niii	m	ш
	ШЩ		Ш		Ш	Ш	Ш

Reg. No. :

Name :

K20P 1187

III Semester M.Sc. Degree (CBSS – Reg./Suppl./Imp.) Examination, October 2020 (2017 Admission Onwards) MATHEMATICS

MAT3C12: Functional Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- Show that Kⁿ with the norm || ||_n is strictly convex.
- 2. For normed spaces X and Y, prove that $||F|| = \sup \{||F(x)|| : x \in X, ||x|| \le 1\}$ is a norm on BL (X, Y).
- 3. Define continuous seminorm on a Banach space.
- For a finite dimensional subspace Y of a normed space X, prove that there is a continuous projection P defined on X such that R(P) = Y.
- 5. For an inner product space X, prove parallelogram law.
- 6. Give an orthonormal basis for the inner product space l^2 .

 $(4 \times 4 = 16)$

PART - B

Answer four questions from this Part without omitting any Unit. Each question carries 16 marks.

UNIT-I

- a) Prove that every closed and bounded subset of a normed space X is compact if and only if X is finite dimensional.
 - b) If E₁ is open in a normed space X and E₂ ⊂ X then show that E₁ + E₂ is open in X.

K20P 1187

- 8. a) State and prove Hahn Banach separation theorem.
 - b) For a normed space X and a subspace Y of X, prove that $x \in \overline{Y}$ if and only if $x \in X$ and f(x) = 0 whenever $f \in X'$ and f/Y = 0.
- a) Show that a normed space X is a Banach space if and only if every absolutely summable series of elements in X is summable in X.
 - b) Define Schauder basis for a normed space X. Also prove that if X has a schauder basis {x₁, x₂, ...} then X must be separable.

UNIT - II

- 10. a) State and prove uniform boundedness principle.
 - b) State and prove Resonance theorem.
- a) For Banach spaces X and Y and a closed linear map F: X → Y, show that F is continuous.
 - b) If X is a normed space and P is a projection on X then prove that P is a closed map if and only if R(P) and Z(P) are closed in X.
- 12. a) State and prove bounded inverse theorem.
 - b) Let X be a Banach space in the norm || ||. Then prove that a norm || ||' on the linear space X is equivalent to the norm || || if and only if X is also a Banach space in the norm || ||' and the norm || ||' is comparable to the norm || ||.

UNIT - III

- a) For an inner product space X, prove that for all x, y ∈ X, | < x, y > |² ≤ < x, x>< y, y>.
 - b) Explain Gram-Schmidt orthonormalization for an inner product space X.
- 14. a) Let E be a non-empty closed convex subset of a Hilbert space H. Then prove that for each x ∈ H, there exists a unique best approximation from E to x.
 - b) Let X be an inner product space and E ⊂ X is convex then prove that there exists at most one best approximation from E to any x ∈ X.
- 15. a) State and prove projection theorem.
 - Show that projection theorem does not hold for the inner product space c₀₀. (4×16=64)