K20P 1189

Reg. N	10.:	
Name	:	**************

III Semester M.Sc. Degree (CBSS - Reg./Suppl./Imp.) Examination, October 2020 (2017 Admission Onwards) MATHEMATICS

MAT 3C 14: Advanced Real Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks.

- Give an example for a convergent series of continuous functions with discontinuous sum.
- Suppose {f_n} and {g_n} converge uniformly on a set E. Show that {f_n + g_n} converges uniformly on E.
- 3. State Parseval's theorem.
- 4. Show that $\lim_{x\to\infty} x^n e^{-x} = 0$, for every natural number n.
- 5. Suppose $A \in L(\mathbb{R}^n, \mathbb{R}^m)$.
 - a) Define the norm ||A|| of A.
 - b) Show that $|Ax| \le ||A|| |x|$ for all $x \in \mathbb{R}^n$.
- State implicit function theorem.

 $(4 \times 4 = 16)$

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - I

- a) Show that the limit of a uniformly convergent sequence of continuous functions is continuous.
 - b) State and prove Weierstrass test for uniform convergence of functions.
 - c) Let $f(x) = \sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$, show that f is continuous on all of \mathbb{R} .

- 8. Suppose f is a continuous complex function on [a, b], then show that there exists a sequence of polynomials P_n such that $\lim_{n\to\infty} P_n(x) = f(x)$ uniformly on [a, b].
- a) Suppose is the uniform closure of an algebra fo bounded functions. Show that is a uniformly closed algebra.
 - b) Suppose A is an algebra of functions on a set E, A separates points on E and A vanishes at no point of E. Suppose x₁, x₂ are distinct points of E and c₁, c₂ are constants. Show that A contains a function f such that f(x₁) = c₁ and f(x₂) = c₂.

Unit - II

10. a) Suppose $\sum_{n=0}^{\infty}c_n$ converges, define $f(x)=\sum_{n=0}^{\infty}c_nx^n$ for $x\in(-1,1)$. Show that

$$\lim_{x\to 1} f(x) = \sum_{n=0}^{\infty} c_n$$

- b) State and prove Taylor's theorem.
- 11. a) Show that the complex field is algebraically complete.
 - b) If f is continuous (with period 2π) and if $\epsilon > 0$, then show that there is a trigonometric polynomial P such that $|P(x) f(x)| < \epsilon$ for all real x.
- 12. a) Define Gamma function. Show that log Γ is convex on (0, ∞).
 - b) Suppose f is a positive function on (0, ∞) such that

i)
$$f(x + 1) = x f(x)$$
,

ii)
$$f(1) = 1$$
,

iii) log f is convex.

Show that $f(x) = \Gamma(x)$.

Unit - III

- a) Let r be a positive integer. If a vector space X is spanned by a set of r vectors, then show that dim X ≤ r.
 - b) Prove that a linear operator A on a finite-dimensional vector space X is one-to-one if and only if the range of A is all of X.
- 14. Suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , show that $f \in \mathscr{C}'(E)$ if and only if the partial derivatives $D_i f_i$ exist and are continuous on E for $1 \le i \le m$, $1 \le j \le n$.
- 15. State and prove inverse function theorem.

 $(4 \times 16 = 64)$