Reg. No. :

Name :

III Semester M.Sc, Degree (CBSS – Reg/Suppl/Imp.) Examination, October 2020
(2017 Admission Onwards)

MATHEMATICS

MAT3E02: Probability Theory

Time: 3 Hours

Max. Marks: 80

PART – A

Answer any four questions. Each question carries four marks.

- I. a) Define a σ field and show that every σ field of subsets of Ω contains the empty set ϕ and the whole space Ω .
 - b) What is meant by a random variable ? Show that the indicator function I_A is a random variable iff A is an event.
 - c) Show that $E(X^2) \ge (E(X))^2$; where X a random variable for which both sides of the inequality is are meaningful.
 - d) Show that a sequence of random variables cannot converge in probability to two essentially different random variables.
 - e) Show that the characteristic function of a random variable is real iff the random variable is symmetric about the origin.
 - f) State true or false and justify "The characteristic function exists for every distribution function". (4x4=16)

PART - B

Answer any four questions without omitting any Unit. Each question carries sixteen marks.

Unit - I

- II. a) Explain the concept of the minimal σ field containing a class of subsets of a given set Ω . Determine the smallest σ field containing subsets A, B of Ω .
 - b) Distinguish between a field and a σ field of subsets of a given set Ω . Give an example of a field which is not a σ field.

- III. a) If X is a random variable, then show that X+, X- and |X| are also random variables.
- b) Let Ω = {a, b, c, d} and 𝒜 = {φ, Ω, {a, b}, {c, d}}. Check whether the set function X defined by X(a) = X(b) = −1, X(c) = 1 and X(d) = 2 is a random variable on (Ω, 𝒜).
- IV. a) State Caratheodory Extension Theorem on probability measure and illustrate it with an example.
 - b) Let X be a random variable on the probability space (Ω, \mathcal{A}, P) . For any Borel set B $\in \mathcal{A}$, define $P_X(B) = P[\omega \in \Omega : X(\omega) \in B]$. Show that P_X is a probability measure on $(\mathbb{R}, \mathcal{A})$.

Unit - II

- V. a) Define the distribution function of a random variable and illustrate it with an example.
 - b) State and prove the Jordan Decomposition Theorem for distribution function.
- a) State and prove the Holder inequality and derive Schwarz inequality as a special case.
 - b) Obtain the mean and variance of the gamma distribution.
- VII. a) If X_n → X and Y_n → Y in probability, then show that aX_n + bY_n → aX + bY and X_nY_n → XY in probability.
 - b) State and prove the monotone convergence theorem on expectation.

Unit - III

- VIII. a) Define the characteristic function φ_X of a random variable X and show that it is a continuous function and satisfies |φ(u)| ≤ φ(0).
 - Show that the characteristic function of the Laplace pdf is a constant multiple of Cauchy pdf.
 - State and prove Bochner's theorem on characteristic function.
 - State and prove Helly-Bray theorem.

 $(4 \times 16 = 64)$