0150708

K19P 1187

Reg. No.:....

III Semester M.Sc. Degree (CBSS-Reg./Suppl./Imp.)
Examination, October - 2019
(2017 Admission Onwards)
MATHEMATICS
MAT 3C 12 : FUNCTIONAL ANALYSIS

The same of Children

Time: 3 Hours

Max. Marks: 80

# PART - A

Answer Four questions from this part. Each question carries 4 marks.

(4×4=16)

- 1. Show that if  $x_n \to x$  in  $l^2$  then  $x_n \to x$  in  $l^{\infty}$ .
- 2. Give an example of an element in  $L^2(\mathbb{R})$  but not in  $L^1(\mathbb{R})$  and prove your claim.
- 3. Show that the norms  $\|.\|$  and  $\|.\|$  on  $K^n$ , n=1,2,... are equivalent.
- 4. Show that co is a Banach space.
- 5. Show that the inverse of a bijective continuous map may not be continuous.
- 6. Among  $l^p$  spaces,  $1 \le p \le \infty$ , select the Hilbert spaces and prove your claim.

# PART - B

Answer 4 questions from this part without omitting any unit. Each question carries 16 marks. (4×16=64)

## UNIT-I

7. a) Let  $\|.\|_{j}$  be a norm on a linear space  $X_{j}$ , j=1,2,...,m. Fix p such that  $1 \le p \le \infty$ . Fix x = (x(1),...,x(m)) in the product space

$$X = X_1 \times ... \times X_m$$
, let  $||x||_p = ||x(1)||_1^p + ... + ||x(m)||_m^p)^{\frac{1}{p}}$ ,

If  $1 \le p < \infty$  and  $\|x\|_{\infty} = \max\{\|x(1)\|_1, ..., \|x(m)\|_m\}$  Then show that  $\|.\|_p$  is a norm on X. Also show that a sequence  $(x_n)$  converges to x in X if and only if  $(x_n(j))$  converges to x(j) in X<sub>j</sub> for every j=1, ..., m.

P.T.O.

K19P 1187

- b) Let X be a normed space. Then show that the following are equivalent.
  - i) Every closed and bounded subset of X is compact.
  - ii) The subset  $\{x \in X : ||x|| \le 1\}$  of X is compact.

201011 (2)

- iii) X is finite dimensional.
- 8. a) Let X and Y be normed space and  $F: X \rightarrow Y$  be a linear map. Then show that the following conditions are equivalent.
  - i) F is bounded on U(0,r) for some r>0.
  - ii) F is continuous at 0.
  - iii) F is continuous on X.
  - iv) F is uniformly continuous on X.
  - v)  $||F(x)|| \le \alpha ||x||$  for all  $x \in X$  and some  $\alpha > 0$ .
  - vi) The zero space Z(F) of F is closed in X and the linear map  $\tilde{F}: X/Z(F) \to Y$  defined by  $\tilde{F}(x+Z(F)) = F(x), x \in X$  is continuous.
  - b) Define bounded linear map and operator norm.
- 9. a) State and prove Taylor-Foguel Theorem.
  - b) Show that a Banach space cannot have a denumerable basis.

### UNIT - II

- 10. a) State and prove Uniform boundedness principle.
  - b) Let X be a normed linear space and (x<sub>n</sub>) be a sequence in X. Prove or disprove: (x<sub>n</sub>) converges in X if and only if f (x<sub>n</sub>) converges in K for every f ∈ X'.
- a) Prove of disprove : The inverse of a bijective continuous map is continuous.
  - b) Let X be a linear space over K. Consider subsets U and V of X, and k∈ K such that U⊂V+kU Then show that every x∈U, there is a sequence v<sub>n</sub>) in V such that x-(u₁+ku₂...+k<sup>n-1</sup>u<sub>n</sub>)∈k<sup>n</sup>U, n=1,2...
  - c) Define projection operator and give an example.
- 12. a) State and prove open mapping theorem.
  - b) Show that the closed graph theorem may not hold if the range of the linear map is not a Banach space.

# UNIT - III

13. a) State and prove Bessel's inequality.

K19P 1187

b) Let X be an inner product space,  $\{u_1, u_2...\}$  be a countable orthonormal set in X and  $k_1, k_2,...$  belong to K. if X is a Hilbert space and  $\sum_n |k_n|^2 < \infty$ , then prove that  $\sum_n k_n u_n$  converges in X.

(3)

- 14. a) State and prove Riesz representation Theorem.
  - b) What do you mean by weak convergence?
- 15. a) Let H be a Hilbert space. For  $y \in H$ , define  $j_y : H' \to K$  by  $j_y(f) = f(y)$ ,  $f \in H'$ . Then prove that  $j_y$  is a continuous linear functional on H' and the map J from H to H'' defined by  $J(y) = j_y$ ,  $y \in H$ , is a surjective linear isometry.
  - b) If the underlying space is a Hilbert space then show that Hahn-Banach extension is unique.