15. a) Suppose f maps a convex open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , f is differentiable in E and f'(x) = 0 for all $x \in E$, then prove that f is constant.

(4)

b) Suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Then prove that $f \in C'(E)$ if and only if the partial derivatives $D_i f_i$ exist and are continuous on E for $1 \le i \le m, 1 \le j \le n$.

at a best "worst give administrate the nego as again to be

0151498

K19P 1189

Reg. No.:....

III Semester M.Sc. Degree (CBSS-Reg./Suppl./Imp.) Examination, October - 2019 (2017 Admn. Onwards) MATHEMATICS

MAT3C14: ADVANCED REAL ANALYSIS

Time: 3 Hours

Max. Marks: 80

PART - A

Answer Four questions from this part. Each question carries $(4 \times 4 = 16)$ 4 marks.

- 1. If $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions and converge uniformly on a set E, prove that $\{f, g_n\}$ converges uniformly on E.
- 2. Consider $f(x) = \sum_{n=1}^{\infty} \frac{1}{1+n^2x}$. Is f continuous wherever the series converges?
- 3. Show that e^x defined on \mathbb{R}^1 satisfy the relation $e^{x+y} = e^x e^y$.
- Show that the functional equation $\Gamma(x+1) = x\Gamma(x)$ holds if $0 < x < \infty$.
- 5. Prove that $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$.
- **6.** If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $B \in L(\mathbb{R}^m, \mathbb{R}^k)$, then prove that $||BA|| \le ||B|| ||A||$.

PART - B

Answer Four questions from this part without omitting any unit. Each (4×16=64) question carries 16 marks.

7. a) Suppose $\lim_{n\to\infty} f_n(x) = f(x)(x \in E)$ and put $M_n = \sup_{x\in E} |f_n(x) - f(x)|$.

P.T.O.

Show that $f_n \to f$ uniformly on E if and only if $M_n \to 0$ as $n \to \infty$.

38 A 12 10 (2)

- b) Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that $\lim_{t\to x} f_n(t) = A_n (n=1,2,...)$. Then prove that $\{A_n\}$ converges and $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$.
- a) If X is a metric space, C(X) denote the set of all complex valued, continuous, bounded functions with domain X. Show that C(X) with supremum norm is a metric space.
- b) Prove that there exists a real continuous function on the real line which is nowhere differentiable.
- 9. a) If K is a compact metric space, if $f_n \in C(K)$ For n = 1, 2, ... and if $\{f_n\}$ is pointwise bounded and equicontinuous on K then prove that
 - i) $\{f_n\}$ is uniformly bounded on K.
 - ii) $\{f_n\}$ contains a uniformly convergent subsequence.
 - b) Define equicontinuity and give an example.

UNIT - II

10. a) Suppose the series $\sum_{n=0}^{\infty} C_n x^n$ converges for |x| < R and define $f(x) = \sum_{n=0}^{\infty} C_n x^n (|x| < R)$.

Then prove that $\sum_{n=0}^{\infty} C_n x^n$ converges unifromly on $[-R+\varepsilon, R-\varepsilon]$, no matter which $\varepsilon > 0$ is chosen. Also shows that the function f is continuous and differentiable in (-R,R), and $f'(x) = \sum_{n=0}^{\infty} nc_n x^{n-1} ((|x| < R))$.

b) Given a double sequence $\{a_{ij}\}$, i=1,2,... j=1,2,... suppose that $\sum_{j=1}^{n}|a_{ij}|=b_i$ (i=1,2,...) and $\sum_{j=1}^{n}b_j$ converges. Then show that $\sum_{j=1}^{n}\sum_{j=1}^{n}a_{ij}=\sum_{j=1}^{n}\sum_{j=1}^{n}a_{ij}$.

11. a) Suppose $a_{0},....a_{n}$ are complex numbers $n \ge 1, a_{n} \ne 0, P(z) = \sum_{k=0}^{\infty} a_{k} z^{k}$. Then prove that P(z)=0 for some complex number z.

(3)

- b) If, for some x, there are constants $\delta > 0$ and $M < \infty$ such that $|f(x+t) f(x)| \le M|t|$ for all $t \in (-\delta, \delta)$, then prove that $\lim_{N \to \infty} S_N(f;x) = f(x)$.
- 12. a) If f is continuous (with period 2π) and if $\epsilon > 0$, then prove there is a trigonometric polynomial P such that $|P(x) f(x)| < \epsilon$ for all real x.
 - b) If f is a positive function on $(0, \infty)$ such that
 - i) f(x+1)=x f(x).
 - ii) f(1) = 1
 - iii) $\log f$ is convex Then prove that $f(x) = \Gamma(x)$.

UNIT - III

- 13. a) Suppose X is a vector space, and dim X=n. Show that
 - i) a set E of n vectors in X spans X if and only if E is independent
 - ii) X has a basis, and every basis consist of n vectors.
 - iii) If $1 \le r \le n$ and $\{y_1, y_2, ..., y_r\}$ is an independent set in X, then show that X has a basis containing $\{y_1, y_2, ..., y_r\}$.
 - b) Define linear transformation and give an example.
- 14. a) Let Ω be the set of all invertible linear operators on \mathbb{R}^n . If $A \in \Omega, B \in L(\mathbb{R}^n)$, and $\|B A\| \cdot \|A^{-1}\| < 1$, then prove that $B \in \Omega$.
 - b) Suppose E is an open set in \mathbb{R}^n , f maps E into \mathbb{R}^m , f is differentiable at $x_0 \in E$, g maps an open set containing f(E) into \mathbb{R}^k , and g is dirrerentiable at $f(x_0)$. Then prove that the mapping F of E into \mathbb{R}^k defined by F(x) = g(f(x)) is differentiable at x_0 and $F'(x_0) = g'(f(x_0)f'(x_0))$.