Suppose E is an open set in 18", i maps E into 18", i is differentiable at tig. If, if it is the life and a set differentiable at the mapping F of E into 18" defined by F (x) = g (f(x)) is differentiable in mid X, and E(x) = g (f(x)) if it is supposed in mid X, and E(x) = g (f(x)) if it is supposed in mid X, and E(x) = g (f(x)) if it is supposed in mid X, and E(x) = g (f(x)) if it is supposed in mid X, and E(x) = g (f(x)) if it is supposed in mid X for it is supposed in the form it is supposed in mid X for it is x is x for it x is x for it x is x for it x is x for x is x fo

K17P 1285

| Reg. | No. | : |  |
|------|-----|---|--|
|      |     |   |  |
|      |     |   |  |

Name : .....

Third Semester M.Sc. Degree (Reg./Suppl./Imp.)
Examination, November 2017
(2014 Admn. Onwards)
MATHEMATICS

MAT3C14: Advanced Real Analysis

Time: 3 Hours Max. Marks: 60

Instructions: 1) Answer any four questions from Part A. Each question carries 3 marks.
 2) Answer any four questions from Part B without omitting any Unit.
 Each question carries 12 marks.

### PART - A

- Prove that every uniformly convergent sequence of bounded functions from the closed interval [a, b] of IR into IR is uniformly bounded.
- Show by an example that a convergent series of continuous functions may have a discontinuous sum.
- 3. Define gamma function and prove that  $\Gamma(n+1) = n!$  for n = 1, 2, 3...
- 4. Suppose the series  $\sum a_n x^n$  and  $\sum b_n x^n$  converge in the segment S = (-R, R). Let E be the set of all  $x \in S$  at which  $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x E^n$ . If E has a limit point in S then prove that  $a_n = b_n$  for n = 0, 1, 2, ...
- Prove or disprove 'If both the partial derivatives of a function f: IR<sup>2</sup> → IR<sup>1</sup>exist at a point of IR<sup>2</sup> then f is continuous at that point'.
- Define the derivative of a map f : E → IR<sup>m</sup>, where E is an open subset of IR<sup>n</sup>, at a point x ∈ E and prove that every linear transformation from IR<sup>n</sup> → IR<sup>m</sup> is differentiable.

# PART-B

#### Unit - I

- a) If {f<sub>n</sub>} is a sequence continuous complex functions on the subset E. A metric space X and if f<sub>n</sub> →f uniformly on E then prove that f is continuous.
  - b) Prove that the space e(x) of all complex valued, continuous bounded functions on the metric space x with the metric induced by the supernum norm on e(x) is a complete metric space.



- a) Let f<sub>m</sub> (x) = lim <sub>n→∞</sub> (cos m! πx)<sup>2n</sup>, for m = 1, 2,.... and for a ≤ x ≤ b (a, b ∈ IR).
   Prove that {f<sub>m</sub> (x)} converges to a function f on [a, b] which is everywhere discontinuous on [a, b] and which is not Riemann integrable.
  - b) If  $\{f_n\}$  is a pointwise bounded sequence of complex functions on a countable set E, then prove that  $\{f_n\}$  has a subsequence  $\{f_{n_k}\}$  such that  $\{f_{n_k}(x)\}$  converges for every  $x \in E$ .
- 9. If k is compact, if  $f_n \in e(k)$  for n = 1, 2, ... and if  $\{f_n\}$  is pointwise bounded and equicontinuous on k then prove that
  - a) {fn} is uniformly bounded on k
  - b) {fn} contains a uniformly convergent subsequence

# Unit - II

10. a) Suppose  $f(x) = \sum_{n=0}^{\infty} c_n x^n$ , the series converges in |x| < R, where R > 0.

If -R < a < R then prove that  $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n (|x-a| < R-|a|).$ 

- b) Prove that the complex field is algebraically closed.
- 11. a) Let  $\{\phi_n\}$  be orthonormal on [a, b]. Let  $s_n(x) = \sum_{m=1}^n c_m \phi_m(x)$  be the  $n^{th}$  partial

sum of the Fourier series of f and suppose  $t_n(x) = \sum_{m=1}^n \gamma_m \, \phi_m(x)$ .

Then prove that  $\int_a^b |f-s_n|^2 dx \le \int_a^b |f-t_n|^2 dx$ .

b) If x > 0, y > 0, prove that the beta function B (x, y) satisfies the identity B  $(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ .

12. State and prove Parseval's theorem for Riemann integrable  $2\pi$  periodic functions.



## Unit - III

-3-

- a) Prove that the set of all linear operators on IR<sup>n</sup> forms an open subset of L(IR<sup>n</sup>).
  - b) Suppose E is an open set in IR<sup>n</sup>, f maps E into IR<sup>m</sup>, f is differentiable at x<sub>0</sub>∈E, g maps an open set containing f(E) into IR<sup>k</sup> and g is differentiable at f(x<sub>0</sub>). Prove that the mapping F of E into IR<sup>k</sup> defined by F(x) = g (f(x)) is differentiable and x<sub>0</sub> and F'(x<sub>0</sub>) = g'(f(x<sub>0</sub>))f'(x<sub>0</sub>).
- 14. a) Suppose f maps an open set  $E \subset IR^n$  into  $IR^m$  and f is differentiable at a point  $x \in E$ , then prove that the partial derivatives  $(D_j f_i)(x)$  exist for  $i \le j \le n$

and 
$$i\leq j\leq m$$
 and  $f'\left(x\right)\,e_{j}^{}=\,\sum_{_{i=1}^{m}}^{m}\,\left(D_{_{j}}^{}\,f_{_{i}}\right)\,\left(x\right)\,u_{_{i}}^{},\,\,i\leq j\leq n\,.$ 

- where  $\{e_1, e_2, \dots e_n\}$  and  $\{u_1, u_2, \dots u_n\}$  are standard bases of  $\mathbb{R}^n$  and  $\mathbb{R}^m$  respectively.
- b) Suppose f maps a convex open set E⊂ IR<sup>n</sup> into IR<sup>m</sup>, f is differentiable in E and there is a constant M such that || f'(x) || ≤ M for every x ∈ E. Prove that || f(b) f(a) |≤ M | b a |, for all a, b ∈ E.
- 15. State and prove the inverse function theorem.