K17P 1284

Reg.	No.	:	
Name			

Third Semester M.Sc. Degree (Reg./Suppl./Imp.) Examination, November 2017 MATHEMATICS (2014 Admn. Onwards) MAT 3C13: Complex Function Theory

Time: 3 Hours

Max. Marks: 60

PART-A

Answer any four questions from this Part. Each question carries 3 marks.

- 1. Show that the sum of residues of an elliptic function is zero.
- 2. Show that the series $\sum_{n=1}^{\infty} n^{-z}$ converges to an analytic function of z in the half plane $\{z : \text{Re } z > 1\}$.
- Construct a meromorphic function in the plane with a simple pole at every positive integer n.
- Define: (i) the complete analytic function obtained from a function element (ii) a complete analytic function.
- 5. If u is harmonic, show that $f = u_x iu_y$ is analytic.
- Let f be an entire function of finite order, show that f assumes each complex number with one possible exception.

PART-B

Answer any four questions from this Part without omitting any Unit. Each question carries 12 marks.

Unit - I

- a) Prove that a discrete module consists of either zero alone of the integral multiples nw of a single complex number w ≠ 0, or all linear combinations
 - $n_1w_1 + n_2w_2$ with integral coefficients of two numbers w_1 , w_2 with nonreal ratio $\frac{w_2}{w_1}$.
 - b) Prove that the zeros a_1, a_2, \ldots, a_n and poles b_1, b_2, \ldots, b_n of an elliptic function f(z) satisfy the relation $a_1 + a_2 + \ldots + a_n = b_1 + b_2 + \ldots + b_n \pmod{M}$ where M is the period module of f(z).

8. a) Establish the formula $P(z) = \frac{1}{z^2} + \sum_{w \neq 0} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2} \right)$ for the weierstrass P-function, where the sum ranges over all $w = n_1 w_1 + n_2 w_2$ except zero.

-2-

- b) Define Weierstrass zeta function ζ (z). With usual notations prove the Legendre's relation $\eta_1 w_2 - \eta_2 w_4 = 2\pi i$.
- 9. a) Prove the Riemann's functional equation for the Riemann zeta function.
 - b) For Re z > 1, prove that $\zeta(z) = \prod_{n=1}^{\infty} (1 P_n^{-z})^{-1}$ where $\{P_n\}$ is the sequence of prime numbers.

Unit - II

10. a) Let K be a compact subset of the region G. Prove that there are straight line segments $\gamma_1, \gamma_2, \dots, \gamma_n$ in G – K such that for every function f in H(G),

$$f(z) = \sum_{K=1}^{n} \frac{1}{2\pi i} \int_{f_{c}} \frac{f(w)}{w - z} dw \text{ for all } z \text{ in } K.$$

- b) State (without proof) Runge's theorem.
- 11. a) Let G be an open connected subset of \mathbb{C} . If $n(\gamma; a) = 0$ for every closed rectifiable curve γ in G and every point a in \mathbb{C} -G, then prove that \mathbb{C}_{∞} - G is connected.
 - b) State and prove Mittag-Leffler's theorem.
- a) State and prove the monodromy theorem.
 - b) Let (f, D) be a function element which admits unrestricted continuation in the simply connected region G. Prove that there is an analytic function

$$F: G \to \mathbb{C}$$
 such that $F(z) = f(z)$ for all z in D.

K17P 1284

Unit - III

-3-

- 13. a) Define a harmonic function. If $u: G \to \mathbb{C}$ is harmonic, prove that u is infinitely differentiable.
 - b) State and prove the second version of the maximum principle for Harmonic functions.
 - c) State (no proof) the minimum principle for harmonic functions.
- 14. a) State and prove Harnack's inequality.
 - b) State and prove Jensen's formula.
- 15. a) Define the genus and order of an entire function.
 - b) If f is an entire function of finite order λ , prove that f has finite genus $\mu \leq \lambda$.