officeroamat benefit for Hill and pully it spent full is dense in Hill

to carding the Hittere exists a unique best approximation from 5 to x.

K16P 1044

Reg. N	0. :		
lame .			

Third Semester M.A./M.Sc./M.Com. Degree (Reg./Suppl./Imp.) Examination, November 2016 MATHEMATICS MAT 3C12: Functional Analysis (2014 Admission Onwards)

Time: 3 Hours Max. Marks: 60

PART-A

Answer any four questions from this Part. Each question carries 3 marks.

- 1. Show that the norms $\| \|_{1}$, $\| \|_{2}$ and $\| \|_{\infty}$ on K ⁿ are equivalent.
- When is a sequence said to be almost convergent? Give an example with justification.
- Let X, Y be normed spaces and F: X → Y be linear. Prove that F is continuous if and only if g_oF is continuous for every g in Y'.
- Show that a continuous map on a normed space is a closed map. Is the converse true? Justify your answer.
- 5. Let $\{x_1,, x_n\}$ be an orthogonal set in an inner product space X. If $k_1,, k_n$ are scalars with absolute value 1, prove that $||k_1, x_1 + + k_n x_n|| = ||x_1 + + x_n||$.
- 6. Let X be an inner product space, F a subspace of X and $x \in X$. If $y \in F$ is a best approximation from F to x, then prove that $(x y) \perp F$. (4x3=12)

PART-B

Answer any four questions from this Part without omitting any Unit. Each question carries 12 marks.

Unit - I

- 7. a) State and prove Riesz Lemma.
 - b) Let X be a normed space. Prove that every closed and bounded subset of X is compact if and only if X is finite dimensional.

P.T.O.

K16P 1044 -2-

8.	a)	State Hahn-Banach extension theorem (no proof) and give an example of nonunique Hahn-Banach extension.	4
	b)	Let X be a normed space. For every subspace Y of X and every $g \in Y'$. Prove that there is a unique Hahn-Banach extension of g to X if and only if X' is strictly convex.	8
9.	a)	Prove that a normed space X is a Banach space if and only if every absolutely summable series of elements of X is summable in X.	6
	b)	Let X and Y be normed spaces and $X \neq \{0\}$. Prove that BL(X, Y) is a Banach space in the operator norm if and only if Y is a Banach space.	6
		aphain & agness collegup a Unit – II year most armoseup augt yns tewen	
10.	a)	Let X be a normed space and E be a subset of X . Prove that E is bounded in X if and only if $f(E)$ is bounded in K for every f in X' .	5
	b)	Let $X = \{x \in C([-\pi, \pi]) : x (\pi) = x (-\pi)\}$ with sub norm. Prove that the Fourier series of every x in a dense subset of X diverges at 0.	7
11.	a)	Let X and Y be Banach spaces and $F: X \to Y$ be a closed linear map. Prove that F is continuous.	8
	b)	Show that the result in part (a) may not hold if X and Y are not Banach spaces.	4
12.	a)	State the two-norm theorem (no proof).	2
	b)	Prove that the coefficient functionals corresponding to a Schauder basis for a Banach space are continuous.	10
		prevening foot questions from this III.— finD six omitting any Unit, Each quest	
13	a)	Prove that an inner product <, > on a linear space X induces a norm on X.	3
a	b)	State a characterization of an inner product space among all normed spaces.	2
	c)	State and prove Bessel's inequality.	7

3-

14. a) Let {u_α} be an orthonormal set in a Hilbert space H. Prove that {u_α} is an orthonormal basis for H if and only if span {u_α} is dense in H.
6
b) Let E be a nonempty closed convex subset of a Hilbert space H. Prove that for each x in H, there exists a unique best approximation from E to x.
6
15. a) State Riesz representation theorem (no proof). What does it state in the case of the Hilbert space Kⁿ ? Justify your answer.
b) Show that Riesz representation theorem does not hold for an incomplete inner product space.
c) Let H be a Hilbert space, G a subspace of H and g be a continuous linear functional on G. Prove that there is a unique continuous linear functional f on H such that f |_G = g and ||f|| = ||g||.
6

K16P 1044

 $(4 \times 12 = 48)$