

Unit - III

13. a) Let E⊂ Rⁿ and f a real valued differentiable function with domain E. For x∈ E and for a unit vector u in Rⁿ define the direction derivative (D_uf)x and prove

that
$$(D_u f)(x) = \sum_{i=1}^{n} (D_i f)(x) u_i$$
, where u_1, u_1, \dots, u_n are the co-ordinates of u .

- b) Let X be a metric space with metric d. If ϕ maps X into X, if X is complete and ϕ is a contraction then prove there exists a unique $x \in X$ such that $\phi(x) = x$.
- 14. Suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Prove that f is continuously differentiable in E. If and only if the partial derivatives $D_j f_i$ exist and are continuous on E for $1 \le i \le m$ and $1 \le j \le n$.
- 15. State and prove the inverse function theorem.

K16P 1046

Reg. No.:....

Third Semester M.A./M.Sc./M.Com. Degree (Reg./Supple./Imp.) Examination, November 2016 MATHEMATICS

MAT 3C14: Advanced Real Analysis (2014 Admission Onwards)

Time: 3 Hours

Max. Marks: 60

Instructions: 1) Answer four questions from Part – A. Each question carries 3 marks.

Answer any four questions from Part – B without omitting any unit.
 Each question carries 12 marks.

PART-A

- Prove or disprove: 'If a sequence {f_n} of differentiable real functions which converges to the differentiable functions f on the interval [a, b] of R then the sequence {f'_n} converges to f' on [a, b]'.
- 2. For every interval [-a, a] prove that there is a sequence of real polynomials P_n such that $P_n(0) = 0$ and such that $\lim_{n \to \infty} P_n(x) = |x|$.
- 3. Show that the exponential function e^x defined on $\mathbb{R}' \to +\infty$ as $x \to +\infty$ and $\to 0$ as $x \to -\infty$. Also show that $\lim_{x \to \infty} x^n e^{-x} = 0$ for every n.
- 4. Show that the function $E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$, $z \in \mathbb{C}$, the space of all complex numbers, is periodic with period $2\pi i$.

- Suppose E is an open set in Rⁿ, f maps E into Rⁿ and x ∈ E. Prove that if the derivative of f at x exists then it is unique.
- State contraction principle and show that the completeness assumption of the statement of the contraction principle is essential.

7. a) For m = 1, 2, let $f_m(x) = \lim_{n \to \infty} (\cos m! \pi x)^{2n}$, $x \in \mathbb{R}$

If $f(x) = \lim_{n \to \infty} (\cos m! \pi x)^{2n}$. Then prove that f is bounded on every

interval but it is not Riemann-integrable on any closed interval [a, b] of IR.

b) Let α be a monotonically increasing function on [a, b]. Suppose $f_n \in R$ (α) on [a, b] for every n. Suppose $f_n \to R$ uniformly on [a, b]. Then prove that $f \in R$ (α) on [a, b]. Also prove that

$$\int_{a}^{b} f d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_{n} d\alpha.$$

- 8. a) Prove or disprove 'Every convergent sequence of real continuous functions contains a uniformly convergent subsequence'.
- b) If K is a compact metric space, if f_n∈ C (K) for n = 1, 2, and if {f_n} converges uniformly on K then prove that {f_n} is equicontinuous on K.
- c) If K is compact, If f_n ∈ C (K) for n = 1, 2, and if {f_n} is point wise bounded and equicontinuous on K then prove that {f_n} is uniformly bounded on K.
- 9. State and prove Weierstrass theorem .

Unit - II

10. a) Let $\sum c_n$ be a convergent series of real numbers. If $f(x) = \sum_{n=0}^{\infty} c_n x^n$,

(-1 < x < 1) then prove that
$$x \to 1$$
 $f(x) = \sum_{n=0}^{\infty} C_n$.

b) Suppose the series $\sum a_n x^n$ and $\sum b_n x^n$ converge in the segment S = (-R, R). Let E be the set of all $x \in S$ at which

$$\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n$$

If E has a limit point in S then prove that $a_n = b_n$, for n = 1, 2, ...

11. a) Let f be Riemann integrable function on [a, b] and $\{\phi_n\}$ a sequence of orthonormal functions on [a, b]. If n is the nth partial sum of the Fourier series of f, and suppose $t_n(x) = \frac{\sum\limits_{m=1}^n r_m \phi_m(x)}{m=1^m}$, for some constants r_m 's. Then prove that $\int\limits_a^b |f-s_n|^2 dx \le \int\limits_a^b |f-t_n|^2 dx$.

b) Define beta function B (x, y) and prove that for x > 0 and y > 0,

$$\mathrm{B}\ (x,\,y) = \frac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)}$$

- c) Write Stirling's formula.
- 12. a) Prove that the complex field is algebraically closed.
 - b) Prove that every continuous periodic functions on \mathbb{R} with period 2π can be approximated by a sequence of trigonometric polynomials.