at State and prove the mean value theorem for homonic for

K16P 1045

Reg.	No.	:	

Name:

Third Semester M.A./M.Sc./M.Com. Degree (Reg./Suppl./Imp.) Examination, November 2016

MATHEMATICS (2014 Admission Onwards)

MAT 3C13: Complex Function Theory

Time: 3 Hours Max. Marks: 60

PART-A

Answer any four questions from this Part. Each question carries 3 marks.

1. Define the Weirstrass functions $\zeta(z)$ and $\sigma(z)$. Also show that

$$\sigma(z + w_1) = -\sigma(z) e^{\eta_1(z+w_1/2)}$$
.

- 2. Prove that $\frac{\zeta'(z)}{\zeta(z)} = -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^z}$ for Rez > 1, where $\zeta(z)$ is the Reimann zeta function and $\Lambda(n)$ is the Mangoldt's function.
- 3. Show that \mathbb{C} and $D = \{z : |z| < 1\}$ are homeomorphic.
- 4. Define i) function element ii) analytic continuation along a path.
- Show that any two harmonic conjugates of a given harmonic function differ by a real constant.
- If f is an entire function of finite order, then prove that f assumes each complex number with one possible exception.

D) Construct a maromorphic function with a simple pole it every integer in

.o.T.9, sand prove Schwarz Reflection Principle.

PART-B

Answer any four questions from this Part without omitting any Unit. Each question carries 12 marks.

Unit -1

- 7. a) Prove that any two bases of the same period module are connected by a unimodular transformation.
 - b) Prove that an elliptic function without poles is constant.
 - c) If $a_1,...$ a_n are zeros $b_1,...$, b_n are poles of an elliptic function, prove that $(a_1 + ... + a_n) (b_1 + ... + b_n)$ is a period.
- 8. a) With usual notations prove that $\wp'(z)^2 = 4\wp(z)^3 g_2\wp(z) g_3$. Deduce that $\wp(z)$ is an inverse of an elliptic integral.
 - b) Establish the addition theorem for the *φ*-function.
- 9. a) Define the Riemann zeta function for Rez>1, prove that

$$\zeta(z) \overline{(z)} = \int\limits_0^\infty (e^t - 1)^{-1} t^{z-1} dt \cdot$$

b) If Rez > 1, prove that $\zeta(z) = \prod_{n=1}^{\infty} (1 - P_n^{-z})^{-1}$, where $\{P_n\}$ is the sequence of prime numbers.

Unit - II

 Let K be a compact subset of the region G. Prove that there are straight line segments r₁, r₂,..., r_n in G - K such that for every function f in H(G)

$$f(z) = \sum_{k=1}^{n} \frac{1}{2\pi i} \int_{k} \frac{f(w)}{w - z} dw$$

- 11. a) State and prove Mittag Leffler's theorem.
 - b) Construct a meromorphic function with a simple pole at every integer n.
- 12. State and prove Schwarz Reflection Principle.

K16P 1045

Unit - III

- 13. a) State and prove the mean value theorem for harmonic functions.
 - State and prove the maximum principle (second version) for harmonic functions.
- 14. Prove that the Dirichlet problem can be solved for the unit disc.
- 15. a) State and prove Jensen's formula.
 - b) Define order of an entire function. Find the order of $f(z) = \exp(z^2)$.