K15P 0061

Reg. No. :

Name :

Third Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp)
Examination, November 2015
MATHEMATICS (2014 Admn.)
MAT 3E01: Graph Theory

Time: 3 Hours Max. Marks: 60

PART-A

Answer any 4 questions. Each question carries 3 marks:

- Find the covering number and edge covering number of the complete graph K_n.
 - 2) Prove that no graph has chromatic polynomial $k^4 3k^3 + 3k^2$.
 - 3) If G is a complete bipartite graph, then prove that $\chi'(G) = \Delta(G)$.
 - 4) Show that if G is a simple planar graph such that G is isomorphic to its dual G^* , then $\epsilon = 2\nu 2$.
 - 5) Prove or disprove : A connected graph G has a perfect matching if and only if $|N(s)| \ge |s|$ for all $s \le v$.
 - 6) If u and v are two non-adjacent vertices of the Peterson graph, find the minimum number of vertices in a u v separating set. Verify the Menger's theorem.

PART-B

Answer any 4 questions without omitting any Unit. Each question carries 12 marks:

Unit - I

II. a) If α and β are respectively the independence number and covering number of G, prove that $\alpha + \beta = \gamma(G)$.

8

b)	Prove that for any two positive integers k and l , $r(k, l) \le$	k+1-2)	4
		K-1	f.'	

- c) Establish that r(2, l) = l.
- III. a) Prove that if $(s_1, s_2, ..., s_n)$ is a partition of the set of integers $\{1, 2, ..., r_n\}$, then for some i, s_i contains x, y and z such that x + y = z. (Here r_n denote the Ramsey number $r(k_1, ..., k_n)$, with $k_i = 3$ for all i).
 - b) Prove that if G is k-critical, then $\delta \ge k-1$.
 - c) Prove that every critical graph is connected.
- IV.a) Prove that for any positive integer k, these exists a k-chromatic graph containing no triangle.
 - b) Let G be a simple graph. Prove that the coefficient of $k^{\upsilon-1}$ is $\pi_k(G)$ is $-\varepsilon$. 4

Unit - II

- V. a) Let G be a connected graph that is not an odd cycle. Prove that G has a 2-edge colouring in which both colours are represented at each vertex of degree atleast 2.
 - b) What is time tabling problem? Explain how it can be solved using the theory of edge coloring.
- VI.a) State and prove the Euler's formula.
 - b) Explain how k₅ is embeddable on a torus?
- VII. a) Define bridge of a subgraph. Prove that if two bridges overlap, then either they are skew or else they are equivalent 3- bridges.
 - b) Show that if G is a simple planar graph with $\upsilon \ge 11$, then G* cannot be planar. 4

Unit - III

VIII	.a)	Prove that a graph G has a perfect matching if and only if $0(G - S) \le S $ for all			
		$S\!\subset\! V.$ Explain how this result is true in case of complete graphs of odd number			
		of vertices.	10		
	b)	Give an example of a non-regular bipartile graph having a perfect			
		matching.	2		
IX.	What is the personal assignment problem? Describe a method to solve it. Illustrate				
	wit	th an example.	12		
X.	Sta	ate and prove the Menger's theorem.	12		