THE RESIDENCE AND THE PROPERTY OF

Reg. No. :

Name:.....

K15P 0060

Third Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.)
Examination, November 2015
MATHEMATICS (2014 Admn.)
MAT3C14: Advanced Real Analysis

Time: 3 Hours Max. Marks: 60

Instructions: Answer 4 questions from Part – A. Each question carries 3 marks.

Answer any 4 questions from Part – B without omitting any Unit.

Each question carries 12 marks.

PART-A

- Show by an example that the limit of a sequence of Riemann integrable functions need not be Riemann integrable.
- Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- 3. Define gamma function Γ and prove that Γ (n+1) = n! for n = 1,2...
- 4. If z is a complex number with |z|=1, prove that there is a unique t in $(0, 2\pi)$ such that E (it) = z.
- Prove that to every A ∈L (ℝⁿ, ℝ') corresponds a unique y∈ ℝⁿ such that Ax = x.y. Prove also that ||A|| = ||y||.
- Suppose f is a differentiable mapping of R¹ into R² such that | f(t)|=1 for every t.
 Prove that f'(t).f(t) = 0.

PART-B

UNIT-1

- 7. a) State and prove Cauchy's criterion for uniform convergence.
 - b) If $\{f_n\}$ is a sequence of continuous functions on E and if $f_n \to f$ uniformly on E then prove that f is continuous on E.

- 8. a) Prove that the space C (x) of all continuous complex bounded functions on a metric space X with the supremum norm is a complete metric space.
 - b) Suppose {f_n} is an equicontinuous sequence of functions on a compact set K and {f_n} converges pointwise on K. Prove that {f_n} converges uniformly on K.

-2-

- 9. a) Suppose K is compact and {f_n} is a sequence of continuous functions on K which converges pointwise to a continuous function f on K. If f_n (x) ≥ f_{n+1}(x) for all x∈K and n = 1, 2,...then prove that f_n →f uniformly on K. Show by an example that the assumption compactness of K cannot be dropped.
 - b) Suppose A is a self adjoint algebra of complex continuous functions on a compact set K. A separates points on K. Prove that A is dense in C (k).

- 10. a) For a double sequence $\{a_{ij}\}$, i=1, 2, 3=..., j=1, 2, 3.... suppose that $\sum_{j=1}^{\infty} |a_{ij}| = b_i \ (i=1,2,3..) \text{ and } \sum_{i=1}^{\infty} b_i \text{ converges then prove that } \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.$
 - b) Suppose $f(x) = \sum_{n=0}^{\infty} c_n x^n$, the series converges in |x| < R. If -R < a < R then prove that f can be expanded in a power series about the point x = a which converges in |x-a| < R-|a| and also prove that $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)(a)}}{n!} (k-a)^n (1x-a) < R-|a|$.
- 11. a) Let f be a 2π periodic function defined on IR . Suppose f is Riemann integrable on $[-\pi, \pi]$. If for some x, there are constants $\delta > 0$ and $M < \infty$ such that $|f(x+t)-f(x)| \le M|t|$ for all $t \in (-8,8)$ then prove that $\lim_{N \to \infty} S_N(f;x) = f(x)$ where $S_N(f;x)$ is N^{th} partial sum of the Fourier series of f.
 - b) If f is continuous (with period 2π) on IR and if ∈> 0 prove that there is a trigonometric polynomial p such that | p(x) f(x) | < ∈ for all real x.
- 12. a) State and prove Parseval's theorem.
 - b) If x > 0 and y > 0 then prove that $\int_{0}^{1} t^{x-1} (1+t)^{y-1} dt = \frac{\Gamma(x)(y)}{\Gamma(x+y)}$.

 a) Prove that a linear operator A on a finite dimensional vector space X is one-to-one if and only if the range of A is all of X.

UNIT - III

- b) Prove that the set Ω of all inversible linear operators on \mathbb{R}^n is open in L (\mathbb{R}^n) and the mapping $A \to A^{-1}$ from Ω to Ω is continuous.
- 14. a) Define differentiability of a function f from an open set E ⊂ IRⁿ into IR^m and prove that the derivative of at a point of ∈ exists then it is unique.
 - b) State and prove chain rule for differentiation for functions of sereval variables.
- 15. a) Suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m and f is differentiable at a point $x \in E$. Then prove that the partial derivatives $(D_i f_i)$ (x) exists and also prove

that
$$f'(x)e_j = \sum_{i=1}^m (D_j f_i)(x)u_i \ (1 \le j \le x)$$
.

b) Suppose f maps a convex open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . If f'(x) = 0, for all $x \in E$ then prove that f is a constant.