COLUMN TO THE STATE OF THE STAT

K15P 0057

Reg. No. :

Name :

Third Semester M.A./M.Sc./M.Com. Degree (Reg./Supple./Imp.)
Examination, November 2015
MATHEMATICS (2014 Admn.)
MAT 3C11: Number Theory

Time: 3 Hours

Max. Marks: 60

PART-A

Answer any four questions from this Part. Each question carries 3 marks.

- 1. Prove that d(n) is odd if and only if n is a square.
- 2. If $P \ge 5$ is a prime and $1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{P} = \frac{r}{P^5}$, prove that $P^3 \mid (r s)$.
- 3. Prove that the Legendre symbol (n|p) is a completely multiplicative function of n.
- 4. Find the solution of the knapsack problem $51 = 3x_1 + 5x_2 + 9x_3 + 18x_4 + 37x_5$.
- 5. Define the norm and trace of an element α in a number field K. If $[K:\mathbb{Q}] = n$ and $\alpha \in \mathbb{Q}$, find $\mathbb{N}(\alpha)$ and $T_K(\alpha)$.
- 6. Find integral basis and discriminant of $\mathbb{Q}(\sqrt{5})$.

PART-B

Answer any four questions from this Part without omitting any Unit. Each question carries 12 marks.

Unit - I

- 7. a) If p_n is the nth prime, prove that the infinite series $\sum_{n=1}^{\infty} \frac{1}{P_n}$ diverges.
 - b) State the Euclidean algorithm. Use it to find the gcd of 826 and 1890 and express the gcd as a linear combination of 826 and 1890.

P.T.O.

K15P 0058

PART-B

-2-

Answer any four questions from this Part without omitting any Unit. Each question carries 12 marks.

UNIT – I

7.	a)	Let X be a normed space. Prove that every closed and bounded subset of X is compact if and only if X is finite dimensional.	6
	b)	Let X and Y be normed spaces and $F: X \to Y$ be a linear map such that the range $R(F)$ is finite dimensional. Prove that F is continuous if and only if the zero space $Z(F)$ of F is closed in X.	6
8.	a)	State and prove Hahn-Banach extension theorem.	7
	b)	Give an example of non unique Hahn-Banach extension.	4
	c)	State a characterization (without proof) of normed spaces which admit unique Hahn-Banach extensions.	1
9.	a)	Prove that a normed space X is a Banach space if and only if every absolutely summable series of elements in X is summable in X.	6
	b)	Prove that a Banach space cannot have a denumerable Hamel basis.	3
	c)	Define a Schauder basis for a normed space and give an example.	3
		UNIT – II	
10.	a)	State and prove uniform boundedness principle.	8
	b)	Show that uniform boundedness principle may not hold if the domain space is not Banach.	4
11.	a)	Let X and Y be Banach spaces and $F: X \to Y$ be a closed linear map. Prove that F is continuous.	8
	b)	Let P be a projection on a normed space X such that R(P) and Z(P) are closed in X. Prove that P is a closed map.	4
12.	a)	Let X and Y be Banach spaces and let $F \in B \ L(X, Y)$ be bijective. Prove that $F^{-1} \in B \ L(Y, X)$.	3
	b)	If $k_n \in K$, $n=0, \pm 1, \pm 2,$ such that $k_n \to 0$ as $n \to \pm \infty$, does there exist some $x \in L^{-1}\left(\left[-\pi, \pi\right]\right)$ such that $\hat{x}(n) = k_n$ for each n ? Justify your answer.	9

-3-

K15P 0058

		17		
	N		/	
	11		_	••
~				

13.	a)	State and prove Schwarz inequality on an inner product space.	6
	b)	Prove that an $\langle \; , \; \rangle$ on a linear space X induces a norm on X.	3
	c)	Among all the l^p spaces $1 \le p < \infty$ show that only l^2 is an inner product space.	3
14.	a)	Let H be a nonzero Hilbert space over K. Prove that H has a countable orthonormal basis if and only if H is separable.	6
	b)	Let E be a nonempty closed convex subset of a Hilbert space H. For each x in H, prove that there exists a unique best approximation from E to x .	6
15.	a)	State and prove projection theorem.	6
	b)	Let (x_n) be a sequence in a Hilbert space H. If (x_n) is bounded, then prove that it has a weak convergent subsequence.	6