no - 10000

 (Let C 5c a connected oriented plane durve and let η: 1 = C be a sail spead giotal government union of C. Then prove that η in either one to prove or

suspine takes exact (* + 250 in Frage U). Done we must be demonstrated some society of

V = V Interestable painter a sugar report production in the per-

The state of the s

†

M 260

Reg. No. :		
Name :		

Third Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.) Examination, November 2014 MATHEMATICS (2007 Admn. Onwards)

Paper - XI: Differential Geometry

Time: 3 Hours Max. Marks: 60

PART-A

Answer any four questions. Each question carries 3 marks.

- 7. Define a vector field on a set $U \subset \mathbb{R}^{n+1}$. Sketch the vector field $\chi(p) = (p, \chi(p))$ where $\chi(p) = (0, 1)$ on \mathbb{R}^2 .
- 2. Let $f: U \to \mathbb{R}$ be a smooth function on U, U open in \mathbb{R}^n . Then prove that the graph of f is an n-surface in \mathbb{R}^{n+1} .
- 3. Prove that geodesics have constant speed.
- 4. Find the velocity, the acceleration, and the speed of the parameterized curve α (t) = (cost, sint).
- If X and Y are smooth vector fields tangent to S along a parameterized curve α:I→S, then prove that (X · Y)' = X' · Y + X · Y'
- Define the length of a parameterized curve in IRⁿ⁺¹. Also show that it is invariant under reparameterization. (4x3=12)

PART-B

Answer any four questions without omitting any Unit. Each question carries 12 marks.

UNIT-I

- a) Let X be a smooth vector field on an open set U ⊂ IRⁿ⁺¹ and let p∈U. Then show that there is a maximal integral curve of X thought p.
 - b) Sketch the vector field X(p) = (p, X(p)) where X(p) = −p on IR². Also find the integral curve of X through p = (1, 1).

P.T.O.

0.

- 8. a) Let U be an open set in IRⁿ⁺¹ and let f = U → IR be smooth. Let p∈U be a regular point of f, and let c = f(p). Then prove that the set of all vectors tangent to f¹(c) at p is equal to [∇ f(p)]².
 - b) Let $f: U \to IR$ be a smooth function and let $\alpha: I \to U$ be an integral curve of ∇f . Show that $\frac{d}{dt}(f \circ \alpha)(t) = || |\nabla f(\alpha(t))||^2$ for all $t \in I$.
- 9. a) State and prove the Lagrange multiplier theorem.
 - b) Show that the maximum and minimum values of the function $g(x_1, x_2) = a \, x_1^2 \, + \, 2b x_1 x_2 + c \, x_2^2 \, \text{ where a, b, c} \in \mathbb{R} \text{ on the unit circle} \\ x_1^2 \, + \, x_2^2 = 1 \text{ are the eigen values of the matrix } \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$

- 10. a) Show that if $\alpha: I \to IR^{n+1}$ is a parameterized curve with constant speed, then $\ddot{\alpha}(t) \perp \dot{\alpha}(t)$ for all $t \in I$.
 - b) Show that for each a, b, c, $d \in \mathbb{R}$, the parameterized curve $\alpha(t) = (\cos(at + b), \sin(at + b), (t + d))$ is a geodesic in the cylinder $x_1^2 + x_2^2 = 1$ in \mathbb{R}^3 .
 - c) State the properties of Levi-Civita parallelism.
- 11. a) Let S be an n-surface in \mathbb{R}^{n+1} , let p, q \in S, and let α be a piecewise smooth parameterized curve from p to q. Then prove that the parallel transport $P_{\alpha}: S_p \to S_q$ along α is a vector space isomorphism which preserves dot products.
 - b) Define the Weingarten map of an oriented n-surface S in \mathbb{R}^{n+1} . Compute the Weingarten map for the circular cylinder $x_2^2 + x_3^2 = a^2$ in \mathbb{R}^3 , $a \neq 0$ by choosing an orientation.
- a) Prove that the Weingarten map L_p is self-adjoint.
 - Prove that local parameterizations of plane curves are unique upto reparameterization.

UNIT - III

- 13. a) Let C be a connected oriented plane curve and let β: I → C be a unit speed global parameterization of C. Then prove that β is either one to one or periodic.
 - b) Prove that for each 1-form w on U (U open in IR^{n+1}) there exist unique functions fi : U \rightarrow IR (i \in {1, 2, ..., n + 1}) such that w = $\sum_{i=1}^{n+1} f_i \ dx_i$.
- 14. a) Let V be a finite dimensional vector space with dot product and let L: V → V be a self-adjoint linear transformation on V. Then prove that there exists an orthonormal basis for V consisting of eigen vectors of L.
- b) Find the Gaussian curvature of the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$ (a, b, c all \neq 0) oriented by its outward normal.
- 15. a) Let φ: U→ IRⁿ⁺¹ be a parameterized n-surface in IRⁿ⁺¹ and let p∈U. Then prove that there exists an open set U₁ ⊂ U about p such that φ(U₁) is an n-surface in IRⁿ⁺¹.
 - b) State and prove the inverse function theorem for n-surfaces. (4x12=48)