Reg. No.:....

Name:.....

Third Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.)
Examination, November 2014
MATHEMATICS

(2007 Admn. Onwards)
Paper – XIII : Functional Analysis – I

Time: 3 Hours

Max. Marks: 60

Instructions: Answer any four questions from Part – A. Each question carries 3 marks.

Answer any four questions from Part - B without omitting

any Unit. Each question carries 12 marks.

PART-A

- Let d and d' be two metrics on a set X. If d is stronger than d' then prove that whenever a sequence x_n → x in X with respect d, the sequence x_n → x in X w.v. to d'.
- 2. Prove that the space $L^{\infty}([a,b])$ is not separable.
- 3. Let $M=(k_{ij})$ be an $m\times n$ matrix with scalar entries. Suppose $X=IK^n$ with $\|\cdot\|$, and $Y=IK^m$ with $\|\cdot\|$, prove that the map $M:X\to Y$ defined by $Mx(i)=\sum_{j=1}^n k_{ij}x(j)$, i=1,2...m is linear and its norm is $\sum_{j=1,2-n}^m \sum_{i=1}^m |k_{ij}|$
- 4. Let $X = \mathbb{K}^2$ with the norm $\|\cdot\|_{\infty}$. Suppose $Y = \{(x(1), x(2)) : x(2) = 0\}$. If $g(x(1), x(2)) = x(1), (x(1), x(2)) \in X$ then prove that $g \in Y'$ and g has only one Hahn Banach extension.

M 26091

-2-

0

- If T is a metric space, show that C₀(T) is a Banach space with respect to the supremum norm.
- Let X and Y be normed spaces and F; X → Y be linear. If g_oF is continuous for every g ∈ Y' prove that F is continuous.
 (4×3=12)

PART-B

Unit-I

- 7. a) State and prove Korovkin's theorem and deduce that the set of polynomials in one variable is dense in c([a, b]) with the sup metric.
 - b) For E⊂IR, let C_E denote the characteristic function of E. Prove that if E is measurable then C_E is measurable.
- 8. a) Prove that if $x \in L'[-\pi, \pi]$ then $\hat{x}(n) \to 0$ as $n \to \pm \infty$.
 - Show that any norm on the scalar field IK (by seeing it as a vector space over IK) is a positive scalar multiple of the absolute value function.
- a) Show by examples the spaces L¹(IR) and L² (IR) are not comparable under inclusion.
 - b) State and prove Riesz lemma for normed spaces.

Unit - II

- a) Show by an example that not all linear functionals on an infinite dimensional normed space are continuous.
 - b) Let X be a normed space over IK and f be a non zero linear functional on X. If E is an open subset of X then prove that f(E) is an open subset of IK.
 - c) Let E be a nonempty convex subset of a normed space X over IK. If $a \in X \setminus \overline{E}$, prove that there are $f \in X'$ and $f \in IR$ such that $Ref(x) \le t < Ref(a)$ for all $x \in \overline{E}$.
- 11. a) Let X be a normed space over IK, Y be a subspace of X and g ∈ Y'. Prove that there exists an f∈ X' such that f/Y = g and || f || = || g ||.
 - b) Define an innerproduct space and show that among all the normed spaces $L^p([0, 1])$, $1 \le p \le \infty$, only the space $L^2([0, 1])$ is an inner product space.

-3-

- a) Let Y be a subspace of X and a ∈ X \ Ȳ. Then prove that there exists some f∈ X' such that f(a) = || a || and || f || = 1.
 - b) State and prove Schwarz inequality for element of an innerproduct space.
 - c) Let X be an innerproduct space and (x₁,... x_n) be an orthonormal set in X. For any scalars k₁, k₂ ... k_n prove that

$$||\; k_1\; x_1 + k_2\; x_2 + \ldots + k_n\; x_n\;||^2 = |\; k_1\;|^2 + \ldots + |\; k_n\;|^2.$$

Unit - III

- a) Show that a normed space X is Banach if and only if every absolutely summable series of elements of X is summable in X.
 - b) Let X be a Banach space, Y be a normed space and \mathfrak{F} be a subset of BL (X, Y) such that for each $x \in X$, the set $\{F(x) = F \in \mathfrak{F}\}$ is bounded in Y. Prove that \mathfrak{F} is uniformly bounded on E.
- 14. a) Let X and Y be metric spaces. Prove that every continuous map F: X → Y is closed. What about the converse? Justify your claim.
 - b) Let X be a normed space and p be a projection. Then prove that a necessary and sufficient condition for closedness of p is the closedness of the subspaces R(p) and Z(p) in X.
- 15. a) Let X be a normed space and E be a subset of X prove that E is bounded in X if and only if f(E) is bounded in IK for every f∈ X'.
 - b) Let X and Y be Banach spaces. If F is a bijective linear bounded map from X and Y, prove that F⁻¹; Y → X is bounded. What about this result when X and Y fail to be Banach? Justify your claim. (4×12=48)