M 26092

| Reg. | No. | : |  |
|------|-----|---|--|
| Mami |     |   |  |

Third Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.)

Examination, November 2014

(2007 Admn. Onwards)

MATHEMATICS

Paper - XIV : Elective - I : Graph Theory (2009 Admission)

Time: 3 Hours

Max. Marks: 60

# PART-A

(Answer any four questions. Each question carries 3 marks).

- 1. Define Ramsey number r(k, l). Show that for all k, r(k, 2) = k.
- Define chromatic number X(G) of a graph G. Give an example of a 3-chromatic graph with justification.
- 3. Obtain the edge chromatic number of the Petersen graph.
- 4. What is meant by planar embedding of a graph? Illustrate with an example.
- Show that every tournament is either disconnected or can be transformed into a disconnected tournament by the reorientation of just one arc.
- 6. In a network define (i) flow (ii) resultant flow (iii) maximum flow. (4x3=12)

M 26092

-2-



### PART-B

Answer any four questions without omitting any unit. Each question carries

# Unit - I

- 7. a) Define the parameters  $\alpha'$  and  $\beta'$  for a graph and if  $\delta > 0$ , then prove that  $\alpha' + \beta' = \upsilon$ .
  - b) Prove that:

i) 
$$r(k, l) \le {k+l-2 \choose k-1}$$
 ii)  $r(k, k) \ge 2^{k/2}$ .

ii) 
$$r(k, k) \ge 2^{\frac{k}{2}}$$

- 8. a) If a simple graph G contains no K<sub>m+1</sub>, prove that G is degree majorized by some complete m - partite graph H. Further show that, if G has the same degree sequence as H, then  $G \cong H$ .
  - b) If G is simple and contains no  $K_{m+1}$ , then prove that  $\sum (G) \leq \sum (T_{m,\upsilon})$ . Further prove that equality holds only if  $G \equiv T_{m,p}$ .
- 9. a) If G is 4-chromatic, prove that G contains a subdivision of K<sub>4</sub>.
  - b) For any positive integer k, prove that there is a k-chromatic graph containing no triangle.

## Unit - II

- 10. a) If G is a simple graph prove that  $\chi = \Delta$  or  $\chi' = \Delta + 1$ .
  - b) If G is bipartite and  $p \ge \Delta$ , prove that there exist p disjoint matchings  $M_1, M_2, ..., M_n$  of G such that  $E = M_1 \cup M_2 \cup ... \cup M_n$ .
- 11. a) State and prove Euler's formula for a connected plane graph.
  - b) If G is a simple planar graph with  $v \ge 3$ , prove that  $\varepsilon \le 3v 6$ .
  - c) Deduce that K<sub>5</sub> is nonplanar.
- 12. a) If two bridges overlap prove that either they are skew or else they are equivalent 3-bridges.
  - b) Prove that every planar graph is 5-vertex colourable.



M 26092

#### Unit - III

- 13. a) Prove that every digraph contains a directed path of length χ-1 and deduce that every tournament has a directed Hamilton path.
  - b) Prove that every loopless digraph D has an independent set S such that each vertex of D not in S is reachable from a vertex in S by a directed path of length at most two. Further deduce that a tournament contains a vertex from which every other vertex is reachable by a directed path of length of most two.
- 14. a) Prove that each vertex of a disconnected tournament D with  $v \ge 3$  is contained in a directed k-cycle,  $3 \le k \le \upsilon$ .
- b) If D is a strict digraph with min  $\{\delta^-, \delta^+\} \ge \frac{\upsilon}{2} > 1$ , prove that D contains a directed Hamilton cycle.
- 15. a) Define a minimum cut in a network N. Let f be a flow and K be a cut such that val f = cap K. Prove that f is a maximum flow and K is a minimum cut.
  - b) Let x and y be two vertices of a digraph D such that x is not joined to y. Prove that the maximum number of internally disjoint directed (x, y) paths in D is equal to the minimum number of vertices whose deletion destroys all directed (x, y) paths in D. Also obtain the undirected version of this statement.

 $(4 \times 12 = 48)$