| Experiment | Exp

K21P 0561

Reg. No.:

Name :

First Semester M.Sc. Degree (CBSS-Reg./Suppl. (Including Mercy Chance)/Imp.) Examination, October 2020

(2017 Admission Onwards)
MATHEMATICS

MAT1C05: Differential Equations

Time: 3 Hours

notisume will be another selled as Max. Marks: 80

Instructions: Answer any four questions from Part – A. Each
question carries 4 marks. Answer any four questions
from Part – B without omitting any Unit. Each question
carries 16 marks.

- Find the indicial equation of the differential equation x³y" + (cos2x - 1)y' + 2xy = 0.
- 2. Define F(a, b, c, x) and show that F'(a, b, c, x) = $\frac{ab}{c}$ F(a + 1, b + 1, c + 1, x).
- 3. Define the Bessel function $J_p(x)$ and show that $\frac{d}{dx} \left[x^p J_p(x) \right] = x^p J_{p-1}(x)$.
- 4. Find two solutions of the system $\frac{dx}{dt} = x + y$, $\frac{dy}{dt} = 4x 2y$.
- 5. If y(x) is a nontrivial solution of the differential equation y'' + q(x)y = 0 on [a, b] then prove that y(x) has at most a finite number of zeros in [a, b].
- Let f(x, y) and df/dy be continuous functions on a closed rectangle R with sides parallel to the axes. Prove that f(x, y) satisfies the Lipschitz condition on R.

P.T.O.

K21P 0561

-2-

PART - B Unit - I

- a) Find a solution as a power series for the initial value problem y' = x y, y(0) = 0. Express the solution in terms of familiar functions. Also verify your solution by directly solving the initial value problem.
 - b) Find the general solution $y = \sum a_n x^n$ in the form $y = a_0 y_1(x) + a_1 y_2(x)$ where $y_1(x)$ and $y_2(x)$ are power series for the differential equation y'' + xy' + y = 0.
- 8. a) Verify that origin is a regular singular point and calculate two independent Frobenius series solutions of the equation $2x^2y'' + x(2x + 1) y y = 0$
 - b) Find two independent Frobenius series solutions of $x^2y'' x^2y' + (x^2 2)y = 0$.
 - a) Define Gauss hypergeometric equation and obtain the hypergeometric series as a solution of this equation.
 - b) Find the nature of the point at infinity for the Gauss hypergeometric equation.

Unit - II

10. a) Using
$$(1 - 2xt + t^2)^{-1/2} = \sum_{n=0}^{\infty} P_n(x) t^n$$
, show that

i)
$$P_n(1) = 1$$
 and $P_n(-1) = (-1)^n$

ii)
$$P_{2n+1}(0) = 0$$
 and $P_{2n}(0) = (-1)^n \frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{2^n \cdot n!}$

b) Prove the orthogonality property of Legendre polynomials.

$$\int_{-1}^{1} P_{m}(x) P_{n}(x) dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{2}{2n+1} & \text{if } m = n \end{cases}$$

- 11. a) Prove that $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.
 - b) Prove the orthogonal property of Bessel functions :

$$\int\limits_0^1 x\ J_P(\lambda_m x)\ J_P(\lambda_n x)\ dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{1}{2}\ J_{P+1}(\lambda_n)^2 & \text{if } m = n \end{cases}$$

-3-

K21P 0561

- 12. a) If two solutions $x = x_1(t)$, $y = y_1(t)$ and $x = x_2(t)$, $y = y_2(t)$ of the system $\frac{dx}{dt} = a_1(t)x + b_1(t)y, \ \frac{dy}{dt} = a_2(t)x + b_2(t)y \text{ are linearly independent on}$ [a, b], then prove that $x = c_1x_1(t) + c_2x_2(t)$, $y = c_1y_1(t) + c_2y_2(t)$ is the general solution of the system on [a, b] for any constants c_1 and c_2 .
 - b) Find the general solution of the system

$$\frac{dx}{dt} = -3x + 4y, \ \frac{dy}{dt} = -2x + 3y.$$

Unit - III

- 13. a) Let u(x) be any nontrivial solution of u'' + q(x) u = 0, where q(x) > 0 for all x > 0. If $\int\limits_{1}^{\infty} q(x) \ dx = \infty$, then prove that u(x) has infinitely many zeros on the positive x-axis.
 - b) State and prove the Sturm comparison theorem.
- 14. a) Let f(x, y) be a continuous function that satisfies a Lipschitz condition on a strip defined by $a \le x \le b$ and $-\infty < y < \infty$. If (x_0, y_0) is any interior point of the strip, prove that the initial value problem y' = f(x, y), $y(x_0) = y_0$ has a unique solution on the interval $a \le x \le b$.
 - b) For what points (x_0, y_0) does the initial value problem y' = |y|, $y(x_0) = y_0$ has a unique solution on some interval $|x x_0| \le h$?
- 15. a) Find the exact solution of the initial value problem y' = x + y, y(0) = 1. Starting with y_o(x) = 1, calculate y_o(x), y_o(x) and y_a(x).
 - b) Solve the following initial value problem (system) by Picard's method.

$$\frac{dy}{dx} = z, y(0) = 1$$

$$\frac{dz}{dx} = -y, \ z(0) = 0$$