

- b) Let V be a finite dimensional vector space and let T be a linear operator on V and let α be any nonzero vector in V and let p_{α} be the T-annihilator of α . Then prove the following
 - i) the degree of p_n is equal to the dimension of the cyclic subspace $Z(\alpha;T)$.
 - ii) If the degree of p_{α} is k, then the vectors α , $T\alpha$, $T^2\alpha$,...., $T^{k-1}\alpha$ form a basis for $Z(\alpha \, ; \, T)$.
 - iii) If U is the linear operator on $Z(\alpha;T)$ induced by T, then the minimal polynomial for U is p_{α} .
- 14. a) Let T be a linear operator on the finite dimensional vector space V over the field F. Suppose that the minimal polynomial for T decomposes over F into a product of linear polynomials. Then prove that there is a diagonalizable operator D on V and a nilpotent operator N on V such that
 - i) T = D + N,
 - ii) DN = ND.

Also shows that the diagonalizable operator D and the nilpotent operator N are uniquely determined by (i) and (ii) and each of them is a polynomial in T.

- b) If A is the companion matrix of a monic polynomial p, then prove that p is both the minimal and the characteristic polynomial of A.
- 15. a) Define orthonormal set in an inner product space and give an example.
 - b) Show that an orthogonal set of nonzero vectors is linearly independent.
 - c) Let W be a finite-dimensional subspace of an inner product space V and let E be the orthogonal projection of V on W. Then prove that E is an idem-potent linear transformation of V onto W, W[⊥] is the null space of E, and V = W⊕ W[⊥].

K21P 0558

Reg. No.:

Name :

First Semester M.Sc. Degree (CBSS – Reg./Suppl. (Including Mercy Chance)/Imp.) Examination, October 2020

(2017 Admission Onwards)

MATHEMATICS

MAT1C02: Linear Algebra

Time: 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Let V be the real vector space of all functions f from \mathbb{R} into \mathbb{R} . Check whether the set of all f such that f(0) = f(1) is a subspace or not.
- 2. Prove that the only subspaces of \mathbb{R}^1 are \mathbb{R}^1 and the zero subspace.
- 3. Describe explicitly the linear transformation T from F^2 into F^2 such that T(1, 0) = (a, b), T(0, 1) = (c, d).
- 4. Let T be a linear operator on \mathbb{R}^3 defined by $T(x_1, x_2, x_3) = (3x_1, x_1 x_2, 2x_1 + x_2 + x_3)$. Prove or disprove that T is invertible.
- 5. In \mathbb{R}^3 , let α_1 = (1, 0, 1), α_2 = (0, 1, -2), α_3 = (-1, -1, 0). If f is a linear functional on \mathbb{R}^3 such that $f(\alpha_1) = 1$, $f(\alpha_2) = -1$, $f(\alpha_3) = 3$ and if α = (a, b, c), find $f(\alpha)$.
- 6. Let V be an inner product space. The distance between two vectors α and β in V is defined by d $(\alpha, \beta) = ||\alpha \beta||$. Then show that d $(\alpha, \beta) = d(\beta, \alpha)$.

PART - B

Answer 4 questions from this part without omitting any Unit. Each question carries 16 marks.

UNIT -

- 7. a) Define basis of a vector space and give an example.
 - b) Suppose P is an n x n invertible matrix over F. Let V be an n-dimensional vector space over F, and let B be an ordered basis of V. Then prove that there is a unique ordered basis B' of V such that

$$[\alpha]_{\mathcal{E}} = P[\alpha]_{\mathcal{E}}$$

 $[\alpha]_{\mathcal{E}} = P^{-1}[\alpha]_{\mathcal{E}}$

for every vector α in V.

- a) Let V be an n-dimensional vector space over the field F and W be an n-dimensional vector space over F. Then prove that the space L(V, W) is finite-dimensional and has dimension mn.
 - b) Let V and W be finite-dimensional vector spaces over the field F such that dim V = dim W. If T is a linear transformation from V into W, then prove that the following are equivalent.
 - i) T is invertible
 - ii) T is nonsingular
 - iii) T is onto.
- 9. a) Let V be an n-dimensional vector space over the field F and W an m-dimensional vector space over F. For each pair of ordered bases B, B' for V and W respectively, the function which assigns to a linear transformation T its matrix to B, B' is an isomorphism between the space L(V, W) and the space of m x n matrices over the field F.
 - b) Let V be a finite-dimensional vector space over the field F, and let $\mathcal{B} = \{\alpha_1, ..., \alpha_n\}$ be a basis for V. Then prove that there is a unique dual basis $\mathcal{B}^* = \{f_1, ..., f_n\}$ for V* such that $f_i(\alpha_i) = \delta_{i,j}$. Also prove that for each linear functional f on V, $f = \sum_{i=1}^n f(\alpha_i) f_i$ and for each vector α in V, $\alpha = \sum_{i=1}^n f_i(\alpha) \alpha_i$.

UNIT - II

K21P 0558

- 10. a) Define characteristic value of a linear operator.
 - b) Let T be a linear operator on a finite dimensional vector space V. If f is the characteristic polynomial for T, then prove that f(T) = 0.
- 11. a) Let V be a finite-dimensional vector space. What is the minimal polynomial for the identity operator on V?
 - b) Let T is any linear operator on a vector space V. If W is an invariant subspace for T, then show that W is invariant under every polynomial in T and for each α in V, the conductor S (α; W) is an ideal in the polynomial algebra F[x].
 - c) If T is any linear operator on a vector space V, then show that the null space of T is invariant under T.
- 12. a) Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.
 - b) Let F be a commuting family of diagonalizable linear operators on the finite-dimensional vector space V. Then prove that there exists an ordered basis for V such that every operator in F is represented in that basis by a diagonal matrix.

UNIT - III

- a) Let T be a linear operator on the space V, and let W₁,..., W_k and E₁, ..., E_k satisfies
 - i) Each E, is a projection
 - ii) $E_i E_i = 0$ if $i \neq j$;
 - iii) $I = E_1 + ... + E_k$;
 - iv) the range of E, is W,.

Then prove that a necessary and sufficient conditions that each subspace W, be invariant under T is that T commutes with each of the projections E,