b) Let [(X_i, Y_i), with a product space (X_i, Y_i) is first countable of any any X = \(\text{T}\) X. Prove that the product space (X_i, Y_i) is first countable of any if X is use the repeated of all but it connected it and only if it connected that a topological space (X_i, Y_i) is competited if and only if it cannot be expressed as the united of two connected by X is the the united to two connected by the X is the the united to two connected by the the third point property is a topological invariant.

a) Let \(\text{(X_i, X_i)}\) or \(\text{A}\) be a collection of topological injects and suppose that for each \(\text{x} \in \text{(X)}\) is \(\text{(X)}\). (3) Let \(\text{(X)}\) is \(\text{(X)}\). (4) The a collection of topological injects and suppose that for each \(\text{(X)}\) is \(\text{(X)}\). (5) If \(\text{(X)}\) is \(\text{(X)}\) is connected.

b) Define a particle connected space and show that the topological space opened as a focally pathwise connected space. Prove that a topological space open and is curve.

b) Define (ii) totally disconnected space, (iii) 0-differentiational space (iii) T_i = space the connected space (iii) 0-differentiational space (iii) T_i = space the connected space (iii) 0-differentiational space (iii) T_i = space the connected space (iii) 0-differentiational space (iii) T_i = space the connected space (iii) 0-differentiational space (iii) T_i = space the connected space (iii) 0-differentiational space (iii) T_i = space the connected space (iii) 0-differentiational space (iii) T_i = space the connected space (iii) 0-differentiational space (iii) T_i = space the connected space (iii) 0-differentiational space (iii) T_i = space the connected space (iii) 0-differentiational space (iii) T_i = space the connected space (iii) 0-differentiational space (iii) T_i = space the connected the connected space (iii) 0-differentiational space (iii) T_i = space the connected the connected space (iii) 0-differentiational space (iiii) T_i = space the connected the connec

Reg. No.:	
Name :	

First Semester M.Sc. Degree (CBSS – Reg./Suppl. (Including Mercy Chance)/Imp.) Examination, October 2020 (2017 Admission Onwards)

MATHEMATICS

MAT1C04: Basic Topology

Time: 3 Hours

Max. Marks: 80

Instructions: 1) Answer any four questions from Part – A. Each question carries 4 marks.

2) Answer any four questions from Part – B. Without omitting any Unit. Each question carries 16 marks.

Inclusive and Strategy (Co. Inclusive Co. A) and a second of the page of the p

- 1. Show that the lower limit topology on $\mathbb R$ is not the usual topology on $\mathbb R$.
- 2. Let X be a set and let d be the discrete metric on X. Show that (X, d) is complete.
- 3. Let A be a subset of the topological space (X, τ) . Show that $\tau_A = \{U \cap A : U \in \tau\}$ is a topology on A.
- 4. Let (X_1, τ_1) and (X_2, τ_2) be second countable spaces and let τ be the product topology of $X = X_1 \times X_2$. Show that (X, τ) is second countable.
- 5. Let X be a set with more than one member and let τ be the discrete topology on X. Is (X, τ) connected? Is it totally disconnected? Why?
- 6. Prove that the closed unit interval has the fixed point property.

X x X = X no ypological tauborg and is PART = B vd between X no ypological

Hnit - I

- a) Define a basis for a topology. State and prove a necessary and sufficient condition for a subset of P(X) to be a basis for a topology on X.
 - b) Let $X = \{1, 2, 3, 4, 5\}$ and $\mathscr{S} = \{\{1\}, \{1, 2, 3\}, \{2, 3, 4\}, \{3, 5\}\}$. Is \mathscr{S} a subbasis for a topology τ on X? If so what is τ ?
 - c) Prove that every metric space is first countable.

P.T.O.

K21P 0560 -2-

- a) Define a separable space and prove that every second countable space is separable.
 - b) Give an example with justification of a separable space that is not second countable.
 - c) Prove that every separable metric space is second countable.
- 9. a) State and prove Baire category theorem.
 - b) Let (X, τ) be a first countable space. Let ⟨X_n⟩ be a sequence in X and x ∈ X.
 Prove that ⟨X_n⟩ clusters at x if and only if there is a subsequence of ⟨X_n⟩ that converges to x.
- c) Prove that metrizability is a topological property.

Unit - II

- 10. a) If τ is the usual topology on \mathbb{R} , find the subspace topology on the subset of all integers.
 - b) Let (A, τ_A) be a subspace of a topological space (X, τ) and let B be a subset of A. Prove that the closure of B in (A, τ_A) is $A \cap \overline{B}$, where \overline{B} is the closure of B in X.
 - c) State and prove that pasting lemma.
- 11. a) Define the product space of two topological spaces (X_1, τ_1) and (X_2, τ_2) and show that $\mathfrak{S} = \left\{\pi_1^{-1}(U) : U \in \tau_1\right\} \cup \left\{\pi_2^{-1}(V) : V \in \tau_2\right\}$ is a subbasis for the product topology on $X_1 \times X_2$.
 - b) Let $X = \{1, 2, 3\}$, $Y = \{4, 5\}$, $\tau = \{\phi, \{1\}, \{1, 2\}, X\}$, $U = \{\phi, \{4\}, Y\}$. Find a subbasis $\mathscr S$ for the product topology on $X \times Y$. Also find the basis $\mathscr B$ that $\mathscr S$ generates.
 - c) Let (X_1, d_1) and (X_2, d_2) be metric spaces, for each i = 1, 2, let τ_i be the topology on X_i generated by d_i . Prove that the product topology on $X = X_1 \times X_2$ is same as the topology on X generated by the product metric.
- 12. a) Let $\{(X_\alpha, \tau_\alpha) : \alpha \in \Lambda\}$ be a family of topological spaces and for each $\alpha \in \Lambda$, let $(A_\alpha, \tau_{A_\alpha})$ be a subspace of (X_α, τ_α) . Prove that the product topology on $\prod_{\alpha \in \Lambda} A_\alpha$ is same as the subspace topology on $\prod_{\alpha \in \Lambda} A_\alpha$ determined by the product topology on $\prod_{\alpha \in \Lambda} X_\alpha$.

K21P 0560

b) Let $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Lambda\}$ be an indexed family of first countable spaces and let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Prove that the product space (X, τ) is first countable if and only if τ_{α} is the trivial topology for all but a countable number of α .

Unit - III

- a) Prove that a topological space (X, τ) is connected if and only if it cannot be expressed as the union of two non-empty sets that are separated in X.
 - b) Let τ be the usual topology on \mathbb{R} . Show that (\mathbb{R}, τ) is connected.
 - c) Prove that fixed point property is a topological invariant.
- 14. a) Let $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Lambda\}$ be a collection of topological spaces and suppose that for each $\alpha \in \Lambda$. $X_2 \neq \emptyset$. Let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Prove that the product space (X, τ) is connected if and only if for each $\alpha \in \Lambda$, $(X_{\alpha}, \tau_{\alpha})$ is connected.
 - b) Define a pathwise connected space and show that the topologist's sine curve is not pathwise connected.
- 15. a) Define a locally pathwise connected space. Prove that a topological space is locally pathwise connected if and only if each path component of each open set is open.
 - b) Define (i) totally disconnected space, (ii) 0-dimensional space (iii) To space.
 - c) Prove that every 0-dimensional space is totally disconnected.