0 Let the continuous on (a, b), if freques and is bounded on (a, b), prove that it is at nounded variation on (a, b).

Determine whicher tigiven by f(x) = x* sin (1/x) if x = 0, if (0) = 0 is all bounded variation on (0, 1).

Let tim of hounded variation on (a, b), Let c = (a, b). Prove that it is all bounded variation on (a, b), Let c = (a, b). Prove that it is all bounded variation on (a, b), Let V be defined by V(x) = V₁ (a, x) and V = t is an increasing functions on (a, b).

Let t and V (a) = 0. Prove that V and V = t are increasing functions on (a, b).

K21P 0559

Reg.	No.	:	

Name :

First Semester M.Sc. Degree (CBSS – Reg./Suppl. (Including Mercy Chance)/Imp.) Examination, October 2020

(2017 Admission Onwards)

MAT1C03: Real Analysis

Time: 3 Hours

Max. Marks: 80

Instructions: Answer any four questions from Part A. Each question carries 4 marks. Answer any four questions from Part B, without omitting any Unit. Each question carries 16 marks.

PART -

- 1. Let X be an infinite set and define d: $X \times x \to \mathbb{R}$ by d (x, x) = 0 for all $x \in X$ and d (x, y) = 1 if $x, y \in X$ and $x \neq y$. Prove that d is a metric on X.
- Let f be a continuous real function on a metric space X. Let Z (f) be the set of all p ∈ X at which f (p) = 0. Prove that Z(f) is closed.
- 3. Define a monotonically increasing function. If f'(x) > 0 in (a, b), prove that f is strictly increasing in (a, b).
- 4. Suppose $f \ge 0$, f is continuous on (a, b) and that $\int_a^b f(x)dx = 0$. Prove that f(x) = 0 for all $x \in [a, b]$.
- 5. If $f \in R(\alpha)$ on [a, b], prove that $|f| \in R(\alpha)$ and $\left| \int_a^b f d\alpha \right| \le \int_a^b |f| d\alpha$.
- 6. Let f and g be complex valued function defined by f (t) = $e^{2\pi it}$ if $t \in [0, 1]$, $g(t) = e^{2\pi it}$ if $t \in [0, 2]$. Prove that f and g have the same graph but are not equivalent.

(8)(= 00 PART - B org. (8 - x) (= 1x)(0 tons e la ... Unit - I

- a) Let {E_n}, n = 1, 2, 3, ..., be a sequence of countable sets. Prove that U_{n=1}E_n is countable.
- b) Prove that the set of all sequences whose elements are the digits 0 and 1 is uncountable.
 - c) Let X be a metric space and K ⊂ Y ⊂ X. Prove that K is compact relative to X if and only if K is compact relative to Y.

P.T.O.



- 8. a) Prove that every k-cell is compact.
 - b) Define a connected set in a metric space X. Prove that a subset E of R¹ is connected if and only if it has the following property:
 if x ∈ E, y ∈ E and x < z < y, then z ∈ E.</p>

.2.

- a) Let f be a continuous mapping of a compact metric space X into a metric space Y. Prove that f is uniformly continuous on X.
 - b) Define discontinuity of the second kind. Illustrate with an example.
 - c) Prove that a monotonic function has no discontinuities of the second kind.

White B he's most smoltened with Unit - Illeria share to

- 10. a) State and prove the generalized mean value theorem.
 - b) Let f be a real differentiable function on [a, b] and that f' (a) $< \lambda \le f'(b)$. Prove that there is a point $x \in (a, b)$ such that $f'(x) = \lambda$.
- c) Let \overline{f} be a continuous mapping of [a, b] into \mathbb{R}^k and \overline{f} be differentiable in (a, b). Prove that there exists $x \in (a, b)$ such that $|\overline{f}(b) \overline{f}(a)| \le (b-a)|\overline{f}'(x)|$.
- 11. a) State and prove Taylor's theorem.
 - b) Prove that $f \in R(\alpha)$ on [a, b] if and only if for every $\in > 0$ there exists a partition P such that $U(P, f, \alpha) L(P, f, \alpha) < \in$.
- 12. a) If f is monotonic on [a, b] and if α is continuous on [a, b], prove that $f \in R(\alpha)$.
 - b) If f_1 , $f_2 \in R(\alpha)$ on [a, b], prove that $f_1 + f_2 \in R(\alpha)$ and that $\int_a^b (f_1 + f_2) d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha.$
 - c) Define unit step function I. If a < s < b, f is bounded on [a, b], f is continuous at s and $\alpha(x) = I(x s)$, prove that $\int_{a}^{b} f d\alpha = f(s)$.

Unit - III

- 13. a) State and prove the fundamental theorem of calculus.
- b) Define the Riemann-stieltjes integral of a mapping f = (f₁, f₂, ..., f_k) of [a, b] into ℝ^k. If f∈R(α) for some monotonically increasing function α on [a, b], prove that |f|∈R(α) and |∫^bf dα| ≤ ∫^b|f|dα.
 - c) If f is of bounded variation on [a, b], prove that f is bounded on [a, b].

K21P 0559

- a) Let f be continuous on [a, b]. If f' exists and is bounded on (a, b), prove that f is of bounded variation on [a, b].
 - b) Determine whether f given by f (x) = x² sin (1/x) if x ≠ 0, f (0) = 0 is of bounded variation on [0, 1].
 - c) Let f be of bounded variation on [a, b]. Let c ∈ (a, b). Prove that f is of bounded variation on [a, b] and V_f (a, b) = V_f (a, c) + V_f (c, b).
- 15. a) Let f be of bounded variation on [a, b]. Let V be defined by V(x) = V_f (a, x) for a < x ≤ b and V (a) = 0. Prove that V and V − f are increasing functions on [a, b].</p>
 - b) Let f and V be as in part (a). Prove that every point of continuity of f is also a point of continuity of V. Also prove that the converse is true.