

Reg. No.	:	
Mama		

II Semester M.Sc. Degree (CBSS-Reg./Suppl./Imp.) Examination, April 2020 (2017 Admission Onwards)

MATHEMATICS

MAT 2C 07: Measure and Integration

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16)

- Define Lebesgue outer measure of a set. Prove that outer measure is translation invariant.
- Let {E_i} be a sequence of measurable sets. If E₁ ⊆ E₂ ⊆ ..., prove that m(lim E_i) = lim m (E_i).
- 3. f(x), $0 \le x \le 1$, is defined by f(x) = 0 for x is rational and if x is irrational, f(x) = n, where n is the number of zeros immediately after the decimal point, in the representation of x on the decimal scale. Show that f is measurable and find $\int_0^1 f \, dx$.
- Let f and g be integrable functions. Prove that f + g is integrable and ∫(f + g) dx = ∫ f dx + ∫ g dx.
- Define a σ ring. Prove that every algebra is a ring and every σ algebra is a σ – ring. Is the converse true? Justify.
- 6. Let f, $g \in L^p(\mu)$ and let a and b be constants, prove that af $+ bg \in L^p(\mu)$.

PART - B

Answer any four questions from this Part without omitting a any Unit. Each question carries 16 marks. (4×16=64)

Unit - I

- 7. a) Define a measurable set. Prove that the class of measurable sets is a σ algebra.
 - b) Prove that there exists a non-measurable set.
- a) Prove that a set E is measurable if and only if for ∈> 0, there exists an open set O ⊇ E such that m*(O − E) ≤ ∈.
 - b) Prove that every interval is measurable.
- 9. a) State and prove Fatou's Lemma.
 - b) Show that $\int_{1}^{\infty} \frac{dx}{x} = \infty$,

K20P 0347

Unit - II

- 10. a) If f is continuous on the finite interval [a, b], then prove that f is integrable. Also prove that F(x) = ∫_a^x f(t) dt, (a < x < b) is a differentiable function such that F'(x) = f(x).</p>
 - b) If f is Riemann integrable and bounded over finite interval [a, b], then prove that f is integrable and R $\int_a^b f dx = \int_a^b f dx$.
 - c) Show that $\lim_{n \to \infty} \int_0^\infty \frac{dx}{(1+x/n)^n x^n} = 1$.
- 11. a) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if f is continuous a.e.
 - b) State and prove Lebesgue's Dominated Convergence Theorem.
- 12. a) Let $\{A_i\}$ be a sequence in a ring R, prove that there exists a sequence $\{B_i\}$ of disjoint sets of R such that $B_i \subseteq A_i$ for each i and $\bigcup_{i=1}^N A_i = \bigcup_{i=1}^N B_i$ for each N so that $\bigcup_{i=1}^\infty A_i = \bigcup_{i=1}^\infty B_i$.
 - b) Let μ^* be an outer measure on H(R) and let S* denote the class of μ^* -measurable sets. Prove that S* is a σ -ring and μ^* restricted to S* is a complete measure.

Unit - III

- 13. a) Let $\{f_n\}$ be a sequence of measurable functions $f_n: X \to [0, \infty]$, prove that $\int \sum_{n=1}^\infty f_n \, d\mu = \sum_{n=1}^\infty \int f_n \, d\mu \, .$
 - b) Let [[X, S, μ]] be a measure space and f a non-negative measurable function. Prove that $\phi(E) = \int_{E} \int d\mu$ is a measure on the measurable space [[X, S]]. Also, if $\int f d\mu < \infty$, prove that for all E > 0, there exists E > 0 such that if E > 0 and E > 0, then E > 0, then E > 0 such that if E > 0 and E > 0 such that if E > 0 such that if E > 0 and E > 0 such that if E > 0 and E > 0 such that if E > 0 such t
- 14. a) State and prove Holder's inequality.
 - b) If $1 \le p < \infty$ and $\{f_n\}$ is a sequence in $L^p(\mu)$ such that $||f_n f_m||_p \to 0$ as $m, n \to \infty$, prove that there exists a function f and a subsequence $\{n_i\}$ such that $\lim f_n = f$ a.e. Also prove that $f \in L^p(\mu)$ and $\lim ||f_n f||_p = 0$.
- 15. a) State and prove Minkowski's inequality.
 - b) Let $f_n \in L^2(a, b)$, $n = 0, 1, 2, ..., f \in L^2(a, b)$ and let $\lim_{n \to \infty} ||f_n f||_2 = 0$.
 - i) Show that $\int_a^b f^2 dx = \lim \int_a^b f_n^2 dx$.
 - ii) Verify (i) for $(a, b) = (-\pi, \pi)$.